• Previous Article
    Theoretical and computational decay results for a Bresse system with one infinite memory in the longitudinal displacement
  • EECT Home
  • This Issue
  • Next Article
    Impulsive conformable fractional stochastic differential equations with Poisson jumps
doi: 10.3934/eect.2021062
Online First

Online First articles are published articles within a journal that have not yet been assigned to a formal issue. This means they do not yet have a volume number, issue number, or page numbers assigned to them, however, they can still be found and cited using their DOI (Digital Object Identifier). Online First publication benefits the research community by making new scientific discoveries known as quickly as possible.

Readers can access Online First articles via the “Online First” tab for the selected journal.

Two simple criterion to obtain exact controllability and stabilization of a linear family of dispersive PDE's on a periodic domain

IMECC-UNICAMP, Rua Sérgio Buarque de Holanda, 651, Cidade Universitária, 13083-859, Campinas-SP, Brazil

* Corresponding author

Received  August 2021 Early access December 2021

In this work, we use the classical moment method to find a practical and simple criterion to determine if a family of linearized Dispersive equations on a periodic domain is exactly controllable and exponentially stabilizable with any given decay rate in $ H_{p}^{s}(\mathbb{T}) $ with $ s\in \mathbb{R}. $ We apply these results to prove that the linearized Smith equation, the linearized dispersion-generalized Benjamin-Ono equation, the linearized fourth-order Schrödinger equation, and the Higher-order Schrödinger equations are exactly controllable and exponentially stabilizable with any given decay rate in $ H_{p}^{s}(\mathbb{T}) $ with $ s\in \mathbb{R}. $

Citation: Francisco J. Vielma leal, Ademir Pastor. Two simple criterion to obtain exact controllability and stabilization of a linear family of dispersive PDE's on a periodic domain. Evolution Equations and Control Theory, doi: 10.3934/eect.2021062
References:
[1]

L. AbdelouhabJ. L. BonaM. Fell and J-C. Saut, Nonlocal models for nonlinear, dispersive waves, Phys. D., 40 (1989), 360-392.  doi: 10.1016/0167-2789(89)90050-X.

[2]

A. AnkiewiczD. J. KedzioraA. ChowduryU. Bandelow and N. Akhmediev, Infinite hierarchy of nonlinear Schrödinger equations and their solutions, Phys. Rev. E., 93 (2016), 012206.  doi: 10.1103/physreve.93.012206.

[3]

J. M. Ball and M. Slemrod, Nonharmonic Fourier series and the stabilization of distributed semi-linear control systems, Comm. Pure Appl. Math., 32 (1979), 555-587.  doi: 10.1002/cpa.3160320405.

[4]

R. Capistrano-Filho and M. Cavalcante, Stabilization and control for the biharmonic Schrödinger equation, Appl. Math. Optim., 84 (2021), 103-144. 

[5]

R. Capistrano-Filho and A. Gomes, Global control aspects for long waves in nonlinear dispersive media, preprint, arXiv: 2013.00921v1.

[6]

T. Cazenave and A. Haraux, An Introduction to Semilinear Evolutions Equations, Oxford Lecture Series in Mathematics and its Applications, 13. The Clarendon Press, Oxford University Press, New York, 1998.

[7]

J.-M. Coron, Control and Nonlinearity, Mathematical Surveys and Monographs, vol. 136, Amer. Math. Soc., 2007. doi: 10.1090/surv/136.

[8]

J.-M. Coron and E. Crépeau, Exact boundary controllability of a nonlinear KdV equation with a critical length, J. Eur. Math. Soc., 6 (2004), 367-398. 

[9]

B. DehmanP. Gérard and G. Lebeau, Stabilization and control for the nonlinear Schr$\ddot{o}$dinger equation on a compact surface, Math. Z., 254 (2006), 729-749.  doi: 10.1007/s00209-006-0005-3.

[10]

G. FibichB. Ilan and G. Papanicolaou, Self-focusing with fourth-order dispersion, SIAM J. Appl. Math., 62 (2002), 1437-1462.  doi: 10.1137/S0036139901387241.

[11]

C. Flores, Control and stability of the linearized dispersion-generalized Benjamin-Ono equation on a periodic domain, Math. Control Signals Systems, 30 (2018), Art. 13, 16pp. doi: 10.1007/s00498-018-0219-z.

[12]

C. FloresS. Oh and D. Smith, Stabilization of dispersion-generalized Benjamin-Ono, Nonlinear Dispersive Waves and Fluids, Contemp. Math., 725 (2019), 111-136.  doi: 10.1090/conm/725/14548.

[13]

C. Heil, A Basis Theory Primer, Expanded Edition, Applied and Numerical Harmonic Analysis, Birkhauser, Birkhäuser/Springer, New York, 2011. doi: 10.1007/978-0-8176-4687-5.

[14]

Z. Huo and Y. Jia, A refined well-posedness for the fourth-order nonlinear Schrödinger equation related to the vortex filament, Com. Part. Dif. Eq., 32 (2007), 1493-1510.  doi: 10.1080/03605300701629385.

[15]

A. E. Ingham, Some trigonometrical inequalities with applications in the theory of series, Math. Z., 41 (1936), 367-379.  doi: 10.1007/BF01180426.

[16]

R. J. Jr. Iorio, KdV, BO and friends in weighted Sobolev spaces, Functional-Analytic Methods for Partial Differential Equations (Tokyo, 1989), Lecture Notes in Math., Springer, Berlin, 1450 (1990), 104–121. doi: 10.1007/BFb0084901.

[17]

R. J. Jr. Iorio and V. Magalhães, Fourier Analysis and Partial Differential Equations, Cambrige Universiy Press 2001. doi: 10.1017/CBO9780511623745.

[18]

V. I. Karpman, Stabilization of soliton instabilities by higher-order dispersion: Fourth order nonlinear Schrödinger-type equations, Phys. Rev. E, 53 (1996), 1336-1339. 

[19]

V. I. Karpman and A. G. Shagalov, Stability of soliton described by nonlinear Schrödinger type equations with higher-order dispersion, Physica D, 144 (2000), 194-210.  doi: 10.1016/S0167-2789(00)00078-6.

[20]

V. Komornik and P. Loreti, Fourier Series in Control Theory, Springer Monographs in Mathematics 2005.

[21]

C. Laurent, Internal control of the Schrödinger equation, Math. Control Relat. Fields, 4 (2014), 161-186.  doi: 10.3934/mcrf.2014.4.161.

[22]

C. Laurent, Global controllability and stabilization for the nonlinear Schrödinger equation on an interval, ESAIM Control Optm. Cal. Var., 16 (2010), 356-379.  doi: 10.1051/cocv/2009001.

[23]

C. LaurentF. Linares and L. Rosier, Control and stabilization of the Benjamin-Ono equation in $L^{2}(\mathbb{T})$, Arch. Rational Mech. Anal., 218 (2015), 1531-1575.  doi: 10.1007/s00205-015-0887-5.

[24]

C. LaurentL. Rosier and B.-Y. Zhang, Control and stabilization of the Korteweg-de Vries equation on a periodic domain, Comm. Partial Differential Equations, 35 (2010), 707-744.  doi: 10.1080/03605300903585336.

[25]

F. Linares and J. H. Ortega, On the controllability and stabilization of the linearized Benjamin-Ono equation, ESAIM: Cont. Optm. Cal. Var., 11 (2005), 204-218.  doi: 10.1051/cocv:2005002.

[26]

F. Linares and L. Rosier, Control and stabilization of the Benjamin-Ono equation on a periodic domain, Trans. Amer. Math. Soc., 367 (2015), 4595-4626.  doi: 10.1090/S0002-9947-2015-06086-3.

[27]

K. Liu, Locally distributed control and damping for the conservative systems, SIAM J. Control Optim., 35 (1997), 1574-1590.  doi: 10.1137/S0363012995284928.

[28]

G. P. MenzalaC. F. Vasconcellos and E. Zuazua, Stabilization of the Korteweg-de Vries equation with localized damping, Quart. Appl. Math., 60 (2002), 111-129.  doi: 10.1090/qam/1878262.

[29]

S. MicuJ. OrtegaL. Rosier and B-Y. Zhang, Control and stabilization of a family of Boussinesq systems, Discrete Contin. Dyn. Syst., 24 (2009), 273-313.  doi: 10.3934/dcds.2009.24.273.

[30]

P. D. Miller, P. A. Perry, J.-C. Saut and C. Sulem, Nonlinear Dispersive Partial Differential Equations and Inverse scattering, Fields Institute Comm. 83, Springer, 2019.

[31]

M. Panthee and F. Vielma Leal, On the controllability and stabilization of the linearized Benjamin equation on a periodic domain, Nonlinear Anal. Real World Appl., 51 (2020), 102978.  doi: 10.1016/j.nonrwa.2019.102978.

[32]

M. Panthee and F. Vielma Leal, On the controllability and stabilization of the Benjamin equation on a periodic domain, Ann. Inst. H. Poincaré Anal. Non Linéaire, 38 (2021), 1605-1652.  doi: 10.1016/j.anihpc.2020.12.004.

[33]

A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Springer-Verlag, New York, 1983. doi: 10.1007/978-1-4612-5561-1.

[34]

L. Rosier, Exact boundary controllability for the Korteweg-de Vries equation on a bounded domain, ESAIM Control Optim. Calc. Var., 2 (1997), 33-55.  doi: 10.1051/cocv:1997102.

[35]

L. Rosier and B.-Y. Zhang, Local exact controllability and stabilizability of the nonlinear Schr$\ddot{o}$dinger equation on a bounded interval, SIAM J. Control Optim., 48 (2009), 972-992.  doi: 10.1137/070709578.

[36]

L. Rosier and B.-Y. Zhang, Control and stabilization of the nonlinear Schr$\ddot{o}$dinger equation on rectangles, Math. Models Methods Appl. Sci., 20 (2010), 2293-2347.  doi: 10.1142/S0218202510004933.

[37]

L. Rosier and B.-Y. Zhang, Global stabilization of the generalized Korteweg-de Vries equation, SIAM J. Control Optim., 45 (2006), 927-956.  doi: 10.1137/050631409.

[38]

W. Rudin, Functional Analysis, 2$^nd$ edition, McGraw-Hill, Inc., New York, 1991.

[39]

D. L. Russell, Controllability and stabilizability theory for linear partial differential equations: Recent progress and open questions, SIAM Rev., 20 (1978), 639-739.  doi: 10.1137/1020095.

[40]

D. L. Russell and B.-Y. Zhang, Controllability and stabilizability of the thrid-order linear dispersion equation on a periodic domain, SIAM J. Control Optim., 31 (1993), 659-676.  doi: 10.1137/0331030.

[41]

D. L. Russell and B.-Y. Zhang, Exact controllability and stabilizability of the Korteweg-de Vries equation, Trans. Amer. Math. Soc., 348 (1996), 3643-3672.  doi: 10.1090/S0002-9947-96-01672-8.

[42]

V. I. Shrira and V. V. Voronovich, Nonlinear dynamics of vorticity waves in the coastal zone, J. Fluid Mech., 326 (1996), 181-203.  doi: 10.1017/S0022112096008282.

[43]

M. Slemrod, A note on complete controllability and stabilizability for linear control systems in Hilbert space, SIAM J. Control, 12 (1974), 500-508.  doi: 10.1137/0312038.

[44]

R. Smith, Nonlinear Kelvin and continental-shelf waves, J. Fluid Mech., 57 (1972), 379-391. 

[45]

B.-Y. Zhang, Exact boundary controllability of the Korteweg-de Vries equation, SIAM J. Control Optim., 37 (1999), 543-565.  doi: 10.1137/S0363012997327501.

show all references

References:
[1]

L. AbdelouhabJ. L. BonaM. Fell and J-C. Saut, Nonlocal models for nonlinear, dispersive waves, Phys. D., 40 (1989), 360-392.  doi: 10.1016/0167-2789(89)90050-X.

[2]

A. AnkiewiczD. J. KedzioraA. ChowduryU. Bandelow and N. Akhmediev, Infinite hierarchy of nonlinear Schrödinger equations and their solutions, Phys. Rev. E., 93 (2016), 012206.  doi: 10.1103/physreve.93.012206.

[3]

J. M. Ball and M. Slemrod, Nonharmonic Fourier series and the stabilization of distributed semi-linear control systems, Comm. Pure Appl. Math., 32 (1979), 555-587.  doi: 10.1002/cpa.3160320405.

[4]

R. Capistrano-Filho and M. Cavalcante, Stabilization and control for the biharmonic Schrödinger equation, Appl. Math. Optim., 84 (2021), 103-144. 

[5]

R. Capistrano-Filho and A. Gomes, Global control aspects for long waves in nonlinear dispersive media, preprint, arXiv: 2013.00921v1.

[6]

T. Cazenave and A. Haraux, An Introduction to Semilinear Evolutions Equations, Oxford Lecture Series in Mathematics and its Applications, 13. The Clarendon Press, Oxford University Press, New York, 1998.

[7]

J.-M. Coron, Control and Nonlinearity, Mathematical Surveys and Monographs, vol. 136, Amer. Math. Soc., 2007. doi: 10.1090/surv/136.

[8]

J.-M. Coron and E. Crépeau, Exact boundary controllability of a nonlinear KdV equation with a critical length, J. Eur. Math. Soc., 6 (2004), 367-398. 

[9]

B. DehmanP. Gérard and G. Lebeau, Stabilization and control for the nonlinear Schr$\ddot{o}$dinger equation on a compact surface, Math. Z., 254 (2006), 729-749.  doi: 10.1007/s00209-006-0005-3.

[10]

G. FibichB. Ilan and G. Papanicolaou, Self-focusing with fourth-order dispersion, SIAM J. Appl. Math., 62 (2002), 1437-1462.  doi: 10.1137/S0036139901387241.

[11]

C. Flores, Control and stability of the linearized dispersion-generalized Benjamin-Ono equation on a periodic domain, Math. Control Signals Systems, 30 (2018), Art. 13, 16pp. doi: 10.1007/s00498-018-0219-z.

[12]

C. FloresS. Oh and D. Smith, Stabilization of dispersion-generalized Benjamin-Ono, Nonlinear Dispersive Waves and Fluids, Contemp. Math., 725 (2019), 111-136.  doi: 10.1090/conm/725/14548.

[13]

C. Heil, A Basis Theory Primer, Expanded Edition, Applied and Numerical Harmonic Analysis, Birkhauser, Birkhäuser/Springer, New York, 2011. doi: 10.1007/978-0-8176-4687-5.

[14]

Z. Huo and Y. Jia, A refined well-posedness for the fourth-order nonlinear Schrödinger equation related to the vortex filament, Com. Part. Dif. Eq., 32 (2007), 1493-1510.  doi: 10.1080/03605300701629385.

[15]

A. E. Ingham, Some trigonometrical inequalities with applications in the theory of series, Math. Z., 41 (1936), 367-379.  doi: 10.1007/BF01180426.

[16]

R. J. Jr. Iorio, KdV, BO and friends in weighted Sobolev spaces, Functional-Analytic Methods for Partial Differential Equations (Tokyo, 1989), Lecture Notes in Math., Springer, Berlin, 1450 (1990), 104–121. doi: 10.1007/BFb0084901.

[17]

R. J. Jr. Iorio and V. Magalhães, Fourier Analysis and Partial Differential Equations, Cambrige Universiy Press 2001. doi: 10.1017/CBO9780511623745.

[18]

V. I. Karpman, Stabilization of soliton instabilities by higher-order dispersion: Fourth order nonlinear Schrödinger-type equations, Phys. Rev. E, 53 (1996), 1336-1339. 

[19]

V. I. Karpman and A. G. Shagalov, Stability of soliton described by nonlinear Schrödinger type equations with higher-order dispersion, Physica D, 144 (2000), 194-210.  doi: 10.1016/S0167-2789(00)00078-6.

[20]

V. Komornik and P. Loreti, Fourier Series in Control Theory, Springer Monographs in Mathematics 2005.

[21]

C. Laurent, Internal control of the Schrödinger equation, Math. Control Relat. Fields, 4 (2014), 161-186.  doi: 10.3934/mcrf.2014.4.161.

[22]

C. Laurent, Global controllability and stabilization for the nonlinear Schrödinger equation on an interval, ESAIM Control Optm. Cal. Var., 16 (2010), 356-379.  doi: 10.1051/cocv/2009001.

[23]

C. LaurentF. Linares and L. Rosier, Control and stabilization of the Benjamin-Ono equation in $L^{2}(\mathbb{T})$, Arch. Rational Mech. Anal., 218 (2015), 1531-1575.  doi: 10.1007/s00205-015-0887-5.

[24]

C. LaurentL. Rosier and B.-Y. Zhang, Control and stabilization of the Korteweg-de Vries equation on a periodic domain, Comm. Partial Differential Equations, 35 (2010), 707-744.  doi: 10.1080/03605300903585336.

[25]

F. Linares and J. H. Ortega, On the controllability and stabilization of the linearized Benjamin-Ono equation, ESAIM: Cont. Optm. Cal. Var., 11 (2005), 204-218.  doi: 10.1051/cocv:2005002.

[26]

F. Linares and L. Rosier, Control and stabilization of the Benjamin-Ono equation on a periodic domain, Trans. Amer. Math. Soc., 367 (2015), 4595-4626.  doi: 10.1090/S0002-9947-2015-06086-3.

[27]

K. Liu, Locally distributed control and damping for the conservative systems, SIAM J. Control Optim., 35 (1997), 1574-1590.  doi: 10.1137/S0363012995284928.

[28]

G. P. MenzalaC. F. Vasconcellos and E. Zuazua, Stabilization of the Korteweg-de Vries equation with localized damping, Quart. Appl. Math., 60 (2002), 111-129.  doi: 10.1090/qam/1878262.

[29]

S. MicuJ. OrtegaL. Rosier and B-Y. Zhang, Control and stabilization of a family of Boussinesq systems, Discrete Contin. Dyn. Syst., 24 (2009), 273-313.  doi: 10.3934/dcds.2009.24.273.

[30]

P. D. Miller, P. A. Perry, J.-C. Saut and C. Sulem, Nonlinear Dispersive Partial Differential Equations and Inverse scattering, Fields Institute Comm. 83, Springer, 2019.

[31]

M. Panthee and F. Vielma Leal, On the controllability and stabilization of the linearized Benjamin equation on a periodic domain, Nonlinear Anal. Real World Appl., 51 (2020), 102978.  doi: 10.1016/j.nonrwa.2019.102978.

[32]

M. Panthee and F. Vielma Leal, On the controllability and stabilization of the Benjamin equation on a periodic domain, Ann. Inst. H. Poincaré Anal. Non Linéaire, 38 (2021), 1605-1652.  doi: 10.1016/j.anihpc.2020.12.004.

[33]

A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Springer-Verlag, New York, 1983. doi: 10.1007/978-1-4612-5561-1.

[34]

L. Rosier, Exact boundary controllability for the Korteweg-de Vries equation on a bounded domain, ESAIM Control Optim. Calc. Var., 2 (1997), 33-55.  doi: 10.1051/cocv:1997102.

[35]

L. Rosier and B.-Y. Zhang, Local exact controllability and stabilizability of the nonlinear Schr$\ddot{o}$dinger equation on a bounded interval, SIAM J. Control Optim., 48 (2009), 972-992.  doi: 10.1137/070709578.

[36]

L. Rosier and B.-Y. Zhang, Control and stabilization of the nonlinear Schr$\ddot{o}$dinger equation on rectangles, Math. Models Methods Appl. Sci., 20 (2010), 2293-2347.  doi: 10.1142/S0218202510004933.

[37]

L. Rosier and B.-Y. Zhang, Global stabilization of the generalized Korteweg-de Vries equation, SIAM J. Control Optim., 45 (2006), 927-956.  doi: 10.1137/050631409.

[38]

W. Rudin, Functional Analysis, 2$^nd$ edition, McGraw-Hill, Inc., New York, 1991.

[39]

D. L. Russell, Controllability and stabilizability theory for linear partial differential equations: Recent progress and open questions, SIAM Rev., 20 (1978), 639-739.  doi: 10.1137/1020095.

[40]

D. L. Russell and B.-Y. Zhang, Controllability and stabilizability of the thrid-order linear dispersion equation on a periodic domain, SIAM J. Control Optim., 31 (1993), 659-676.  doi: 10.1137/0331030.

[41]

D. L. Russell and B.-Y. Zhang, Exact controllability and stabilizability of the Korteweg-de Vries equation, Trans. Amer. Math. Soc., 348 (1996), 3643-3672.  doi: 10.1090/S0002-9947-96-01672-8.

[42]

V. I. Shrira and V. V. Voronovich, Nonlinear dynamics of vorticity waves in the coastal zone, J. Fluid Mech., 326 (1996), 181-203.  doi: 10.1017/S0022112096008282.

[43]

M. Slemrod, A note on complete controllability and stabilizability for linear control systems in Hilbert space, SIAM J. Control, 12 (1974), 500-508.  doi: 10.1137/0312038.

[44]

R. Smith, Nonlinear Kelvin and continental-shelf waves, J. Fluid Mech., 57 (1972), 379-391. 

[45]

B.-Y. Zhang, Exact boundary controllability of the Korteweg-de Vries equation, SIAM J. Control Optim., 37 (1999), 543-565.  doi: 10.1137/S0363012997327501.

Figure 1.  Dispersion of $ \lambda_{k} $'s for KdV, Benjamin-Ono and Benjamin equations
Figure 2.  Dispersion of $ \lambda_{k} $'s for Schrödinger equation
Figure 3.  Dispersion of $ \lambda_{k} $'s for the Smith and fourth-order Schrödinger equations with $ \mu>0. $
[1]

Jerry Bona, Hongqiu Chen. Well-posedness for regularized nonlinear dispersive wave equations. Discrete and Continuous Dynamical Systems, 2009, 23 (4) : 1253-1275. doi: 10.3934/dcds.2009.23.1253

[2]

Luc Molinet, Francis Ribaud. On global well-posedness for a class of nonlocal dispersive wave equations. Discrete and Continuous Dynamical Systems, 2006, 15 (2) : 657-668. doi: 10.3934/dcds.2006.15.657

[3]

Zhaohui Huo, Boling Guo. The well-posedness of Cauchy problem for the generalized nonlinear dispersive equation. Discrete and Continuous Dynamical Systems, 2005, 12 (3) : 387-402. doi: 10.3934/dcds.2005.12.387

[4]

Charlotte Rodriguez. Networks of geometrically exact beams: Well-posedness and stabilization. Mathematical Control and Related Fields, 2022, 12 (1) : 49-80. doi: 10.3934/mcrf.2021002

[5]

Yassine El Gantouh, Said Hadd. Well-posedness and approximate controllability of neutral network systems. Networks and Heterogeneous Media, 2021, 16 (4) : 569-589. doi: 10.3934/nhm.2021018

[6]

Thomas Y. Hou, Congming Li. Global well-posedness of the viscous Boussinesq equations. Discrete and Continuous Dynamical Systems, 2005, 12 (1) : 1-12. doi: 10.3934/dcds.2005.12.1

[7]

Massimo Cicognani, Michael Reissig. Well-posedness for degenerate Schrödinger equations. Evolution Equations and Control Theory, 2014, 3 (1) : 15-33. doi: 10.3934/eect.2014.3.15

[8]

Hongqiu Chen. Well-posedness for a higher-order, nonlinear, dispersive equation on a quarter plane. Discrete and Continuous Dynamical Systems, 2018, 38 (1) : 397-429. doi: 10.3934/dcds.2018019

[9]

Louis Tebou. Well-posedness and stabilization of an Euler-Bernoulli equation with a localized nonlinear dissipation involving the $p$-Laplacian. Discrete and Continuous Dynamical Systems, 2012, 32 (6) : 2315-2337. doi: 10.3934/dcds.2012.32.2315

[10]

Hongjun Gao, Chengfeng Sun. Well-posedness of stochastic primitive equations with multiplicative noise in three dimensions. Discrete and Continuous Dynamical Systems - B, 2016, 21 (9) : 3053-3073. doi: 10.3934/dcdsb.2016087

[11]

Jean-Daniel Djida, Arran Fernandez, Iván Area. Well-posedness results for fractional semi-linear wave equations. Discrete and Continuous Dynamical Systems - B, 2020, 25 (2) : 569-597. doi: 10.3934/dcdsb.2019255

[12]

Boris Andreianov, Mohamed Maliki. On classes of well-posedness for quasilinear diffusion equations in the whole space. Discrete and Continuous Dynamical Systems - S, 2021, 14 (2) : 505-531. doi: 10.3934/dcdss.2020361

[13]

Yong Zhou, Jishan Fan. Local well-posedness for the ideal incompressible density dependent magnetohydrodynamic equations. Communications on Pure and Applied Analysis, 2010, 9 (3) : 813-818. doi: 10.3934/cpaa.2010.9.813

[14]

Junxiong Jia, Jigen Peng, Kexue Li. Well-posedness of abstract distributed-order fractional diffusion equations. Communications on Pure and Applied Analysis, 2014, 13 (2) : 605-621. doi: 10.3934/cpaa.2014.13.605

[15]

Giuseppe Floridia. Well-posedness for a class of nonlinear degenerate parabolic equations. Conference Publications, 2015, 2015 (special) : 455-463. doi: 10.3934/proc.2015.0455

[16]

Daoyuan Fang, Ruizhao Zi. On the well-posedness of inhomogeneous hyperdissipative Navier-Stokes equations. Discrete and Continuous Dynamical Systems, 2013, 33 (8) : 3517-3541. doi: 10.3934/dcds.2013.33.3517

[17]

Qunyi Bie, Qiru Wang, Zheng-An Yao. On the well-posedness of the inviscid Boussinesq equations in the Besov-Morrey spaces. Kinetic and Related Models, 2015, 8 (3) : 395-411. doi: 10.3934/krm.2015.8.395

[18]

Can Li, Weihua Deng, Lijing Zhao. Well-posedness and numerical algorithm for the tempered fractional differential equations. Discrete and Continuous Dynamical Systems - B, 2019, 24 (4) : 1989-2015. doi: 10.3934/dcdsb.2019026

[19]

Hyungjin Huh, Bora Moon. Low regularity well-posedness for Gross-Neveu equations. Communications on Pure and Applied Analysis, 2015, 14 (5) : 1903-1913. doi: 10.3934/cpaa.2015.14.1903

[20]

Reinhard Racke, Jürgen Saal. Hyperbolic Navier-Stokes equations I: Local well-posedness. Evolution Equations and Control Theory, 2012, 1 (1) : 195-215. doi: 10.3934/eect.2012.1.195

2020 Impact Factor: 1.081

Metrics

  • PDF downloads (230)
  • HTML views (152)
  • Cited by (0)

Other articles
by authors

[Back to Top]