The first part of this works deals with an integro–differential operator with boundary condition related to the interior solution. We prove that the model is governed by a strongly continuous semigroup and we precise its growth inequality. In the second part of this works, we model the proliferation-quiescence phases through a system of first order equations. We also prove that the proliferation-quiescence model is governed by a strongly continuous semigroup and we precise its growth inequality. In the last part, we give some applications in Demography and Biology.
Citation: |
[1] |
O. Arino, E. Sánchez and G. F. Webb, Necessary and sufficient conditions for asynchronous exponential growth in age structured cell populations with quiescence, J. Math. Anal. Appl., 215 (1997), 499-513.
doi: 10.1006/jmaa.1997.5654.![]() ![]() ![]() |
[2] |
J. Banasiak, W. Lamb and P. Laurençot, Analytic Methods for Coagulation-Fragmentation Models. Ⅰ, CRC Press, Boca Raton, FL, 2020.
![]() |
[3] |
J. Banasiak, W. Lamb and P. Laurençot, Analytic Methods for Coagulation-Fragmentation Models. Ⅱ, CRC Press, Boca Raton, FL, 2020.
![]() ![]() |
[4] |
J. Banasiak, K. Pichór and R. Rudnicki, Asynchronous exponential growth of a general structured population model, Acta. Appl. Math., 119 (2012), 149-166.
doi: 10.1007/s10440-011-9666-y.![]() ![]() ![]() |
[5] |
H. T. Banks, F. Kappel and C Wang, Weak solutions and differentiability for size structure population models, Estimation and Control of Distributed Parameter Systems, Internat. Ser. Numer. Math., Birkhäuser, Basel, 100 (1991), 35-50.
doi: 10.1007/978-3-0348-6418-3_2.![]() ![]() ![]() |
[6] |
H. T. Banks and H. T. Tran, Mathematical and Experimental Modeling of Physical and Biological Processes, CRC Press, Boca Raton, FL, 2009.
![]() ![]() |
[7] |
V. Barbu, M. Iannelli and M. Martcheva, On the controllability of the Lotka-McKendrick model of population dynamics, Journ. Math. Ana. Appl., 253 (2001), 142-165.
doi: 10.1006/jmaa.2000.7075.![]() ![]() ![]() |
[8] |
M. Boulanouar, On a mathematical model of age-cycle length structured cell population with non-compact boundary conditions, Math. Meth. Appl. Sci., 38 (2015), 2081-2104.
doi: 10.1002/mma.3206.![]() ![]() ![]() |
[9] |
M. Boulanouar, A mathematical study in the theory of dynamic population, Journ. Math. Anal. Appl., 255 (2001), 230-259.
doi: 10.1006/jmaa.2000.7237.![]() ![]() ![]() |
[10] |
M. Boulanouar, A transport equation in cell population dynamics, Diff. Int. Equa., 13 (2000), 125-144.
![]() ![]() |
[11] |
M. Boulanouar, Mathematical analysis of an abstract model and its applications to structured populations. Ⅱ, In preparation.
![]() |
[12] |
M. Boulanouar, Mathematical analysis of an abstract model and its applications to structured populations. Ⅲ, In preparation.
![]() |
[13] |
M. Boulanouar, Mathematical analysis of an abstract model and its applications to structured populations. Ⅳ, In preparation.
![]() |
[14] |
M. Boulanouar and L. Leboucher, A transport equation in cell population dynamics, C. R. Acad. Sci. Paris Sér. I Math., 321 (1995), 305-308.
![]() ![]() |
[15] |
H. Brézis, Functional Analysis, Sobolev Spaces and Partial Differential Equations, Universitext, Springer, New York, 2011.
![]() ![]() |
[16] |
Ph. Clément and al, One-Parameter Semigroups, North-Hollandn, Amerterdam, New York, 1987.
![]() |
[17] |
R. Dilão and A. Lakmeche, On the weak solutions of the McKendrick equation: Existence of demography cycles, Math. Model. Nat. Phenom., 1 (2006), 1-32.
doi: 10.1051/mmnp:2006001.![]() ![]() ![]() |
[18] |
K. -J. Engel and R. Nagel, One-Parameter Semigroups for Linear Evolution Equations, Graduate Texts in Mathematics, 194. Springer-Verlag, New York, 2000.
![]() ![]() |
[19] |
J. Z. Farkas and P. Hinow, On a size-structured two-phase population model with infinite states-at-birth, Positivity, 14 (2010), 501-514.
doi: 10.1007/s11117-009-0033-4.![]() ![]() ![]() |
[20] |
M. Iannelli, Mathematical Theory of age-structured population dynamics, Giardini Editory e Stampatori, Pisa, 1995.
![]() |
[21] |
M. Iannelli and F. Milner, On the approximation of Lotka McKendrick equation with finite life span, Jour. Comput. Appl. Math., 136 (2001), 245-254.
doi: 10.1016/S0377-0427(00)00616-6.![]() ![]() ![]() |
[22] |
H. Inaba, Age-Structured Population Dynamics in Demography and Epidemiology, Springer, Singapore, 2017.
doi: 10.1007/978-981-10-0188-8.![]() ![]() ![]() |
[23] |
A. G. McKendrick, Applications of mathematics to medical problems, Proc. Edinburgh Math. Soc., 44 (1926), 98-130.
doi: 10.1017/S0013091500034428.![]() ![]() |
[24] |
J. A. J. Metz and O. Diekmann, The dynamics of physiologically structured populations, Lecture Notes in Biomathematics, 68 (1986).
![]() |
[25] |
M. Mokhtar-Kharroubi and Q. Richard, Spectral theory and time asymptotics of size-structured two-phase population models, Discrete Contin. Dyn. Syst. Serie B, 25 (2020), 2969-3004.
doi: 10.3934/dcdsb.2020048.![]() ![]() ![]() |
[26] |
G. Pelovska and M. Iannelli, Numerical methods for the Lotka McKendrick's equation, Jour. Comp. Appl. Math., 197 (2006), 534-557.
doi: 10.1016/j.cam.2005.11.033.![]() ![]() ![]() |
[27] |
O. Scherbaum and G. Rasch, Cell size distribution and single cell growth in Tetrahymena pyriformis, GL. Arch. Pathol. Microbiol. Scand., 41 (1957), 161-182.
doi: 10.1111/j.1699-0463.1957.tb01014.x.![]() ![]() |
[28] |
F. R. Sharpe and A. J. Lotka, A problem in age distribution, Phil. Mag., 21 (1911), 435-438.
doi: 10.1007/978-3-642-81046-6_13.![]() ![]() |
[29] |
J. W. Sinko and W. Streifer, A new model for age-size structure for a population, Ecology, 48 (1967), 910-918.
doi: 10.2307/1934533.![]() ![]() |
[30] |
H. Von Foerster, Some remarks on changing populations, The Kinetics of Cellular Proliferation (Grune and Stratton, NY), (1959), 382–407.
![]() |
[31] |
G. F. Webb, Dynamics of structured populations with inherited properties, Comput. Math. Appl., 13 (1987), 749-757.
doi: 10.1016/0898-1221(87)90160-X.![]() ![]() ![]() |
Schematic representation of the cell transit between (P) and (Q)