\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Mathematical analysis of an abstract model and its applications to structured populations (I)

To the memory of the professor Ovide Arino. He was a philanthropist and a great mathematician.

Abstract Full Text(HTML) Figure(1) Related Papers Cited by
  • The first part of this works deals with an integro–differential operator with boundary condition related to the interior solution. We prove that the model is governed by a strongly continuous semigroup and we precise its growth inequality. In the second part of this works, we model the proliferation-quiescence phases through a system of first order equations. We also prove that the proliferation-quiescence model is governed by a strongly continuous semigroup and we precise its growth inequality. In the last part, we give some applications in Demography and Biology.

    Mathematics Subject Classification: Primary: 35B40, 47D06; Secondary: 92D25.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • Figure 1.  Schematic representation of the cell transit between (P) and (Q)

  • [1] O. ArinoE. Sánchez and G. F. Webb, Necessary and sufficient conditions for asynchronous exponential growth in age structured cell populations with quiescence, J. Math. Anal. Appl., 215 (1997), 499-513.  doi: 10.1006/jmaa.1997.5654.
    [2] J. BanasiakW. Lamb and  P. LaurençotAnalytic Methods for Coagulation-Fragmentation Models. Ⅰ, CRC Press, Boca Raton, FL, 2020. 
    [3] J. BanasiakW. Lamb and  P. LaurençotAnalytic Methods for Coagulation-Fragmentation Models. Ⅱ, CRC Press, Boca Raton, FL, 2020. 
    [4] J. BanasiakK. Pichór and R. Rudnicki, Asynchronous exponential growth of a general structured population model, Acta. Appl. Math., 119 (2012), 149-166.  doi: 10.1007/s10440-011-9666-y.
    [5] H. T. BanksF. Kappel and C Wang, Weak solutions and differentiability for size structure population models, Estimation and Control of Distributed Parameter Systems, Internat. Ser. Numer. Math., Birkhäuser, Basel, 100 (1991), 35-50.  doi: 10.1007/978-3-0348-6418-3_2.
    [6] H. T. Banks and  H. T. TranMathematical and Experimental Modeling of Physical and Biological Processes, CRC Press, Boca Raton, FL, 2009. 
    [7] V. BarbuM. Iannelli and M. Martcheva, On the controllability of the Lotka-McKendrick model of population dynamics, Journ. Math. Ana. Appl., 253 (2001), 142-165.  doi: 10.1006/jmaa.2000.7075.
    [8] M. Boulanouar, On a mathematical model of age-cycle length structured cell population with non-compact boundary conditions, Math. Meth. Appl. Sci., 38 (2015), 2081-2104.  doi: 10.1002/mma.3206.
    [9] M. Boulanouar, A mathematical study in the theory of dynamic population, Journ. Math. Anal. Appl., 255 (2001), 230-259.  doi: 10.1006/jmaa.2000.7237.
    [10] M. Boulanouar, A transport equation in cell population dynamics, Diff. Int. Equa., 13 (2000), 125-144. 
    [11] M. Boulanouar, Mathematical analysis of an abstract model and its applications to structured populations. Ⅱ, In preparation.
    [12] M. Boulanouar, Mathematical analysis of an abstract model and its applications to structured populations. Ⅲ, In preparation.
    [13] M. Boulanouar, Mathematical analysis of an abstract model and its applications to structured populations. Ⅳ, In preparation.
    [14] M. Boulanouar and L. Leboucher, A transport equation in cell population dynamics, C. R. Acad. Sci. Paris Sér. I Math., 321 (1995), 305-308. 
    [15] H. Brézis, Functional Analysis, Sobolev Spaces and Partial Differential Equations, Universitext, Springer, New York, 2011.
    [16] Ph. Clément and al, One-Parameter Semigroups, North-Hollandn, Amerterdam, New York, 1987.
    [17] R. Dilão and A. Lakmeche, On the weak solutions of the McKendrick equation: Existence of demography cycles, Math. Model. Nat. Phenom., 1 (2006), 1-32.  doi: 10.1051/mmnp:2006001.
    [18] K. -J. Engel and R. Nagel, One-Parameter Semigroups for Linear Evolution Equations, Graduate Texts in Mathematics, 194. Springer-Verlag, New York, 2000.
    [19] J. Z. Farkas and P. Hinow, On a size-structured two-phase population model with infinite states-at-birth, Positivity, 14 (2010), 501-514.  doi: 10.1007/s11117-009-0033-4.
    [20] M. Iannelli, Mathematical Theory of age-structured population dynamics, Giardini Editory e Stampatori, Pisa, 1995.
    [21] M. Iannelli and F. Milner, On the approximation of Lotka McKendrick equation with finite life span, Jour. Comput. Appl. Math., 136 (2001), 245-254.  doi: 10.1016/S0377-0427(00)00616-6.
    [22] H. Inaba, Age-Structured Population Dynamics in Demography and Epidemiology, Springer, Singapore, 2017. doi: 10.1007/978-981-10-0188-8.
    [23] A. G. McKendrick, Applications of mathematics to medical problems, Proc. Edinburgh Math. Soc., 44 (1926), 98-130.  doi: 10.1017/S0013091500034428.
    [24] J. A. J. Metz and O. Diekmann, The dynamics of physiologically structured populations, Lecture Notes in Biomathematics, 68 (1986).
    [25] M. Mokhtar-Kharroubi and Q. Richard, Spectral theory and time asymptotics of size-structured two-phase population models, Discrete Contin. Dyn. Syst. Serie B, 25 (2020), 2969-3004.  doi: 10.3934/dcdsb.2020048.
    [26] G. Pelovska and M. Iannelli, Numerical methods for the Lotka McKendrick's equation, Jour. Comp. Appl. Math., 197 (2006), 534-557.  doi: 10.1016/j.cam.2005.11.033.
    [27] O. Scherbaum and G. Rasch, Cell size distribution and single cell growth in Tetrahymena pyriformis, GL. Arch. Pathol. Microbiol. Scand., 41 (1957), 161-182.  doi: 10.1111/j.1699-0463.1957.tb01014.x.
    [28] F. R. Sharpe and A. J. Lotka, A problem in age distribution, Phil. Mag., 21 (1911), 435-438.  doi: 10.1007/978-3-642-81046-6_13.
    [29] J. W. Sinko and W. Streifer, A new model for age-size structure for a population, Ecology, 48 (1967), 910-918.  doi: 10.2307/1934533.
    [30] H. Von Foerster, Some remarks on changing populations, The Kinetics of Cellular Proliferation (Grune and Stratton, NY), (1959), 382–407.
    [31] G. F. Webb, Dynamics of structured populations with inherited properties, Comput. Math. Appl., 13 (1987), 749-757.  doi: 10.1016/0898-1221(87)90160-X.
  • 加载中

Figures(1)

SHARE

Article Metrics

HTML views(964) PDF downloads(310) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return