2008, 15: 17-23. doi: 10.3934/era.2008.15.17

Hyperfinite graph limits

Citation: Oded Schramm. Hyperfinite graph limits. Electronic Research Announcements, 2008, 15: 17-23. doi: 10.3934/era.2008.15.17
[1]

Sam Northshield. Quasi-regular graphs, cogrowth, and amenability. Conference Publications, 2003, 2003 (Special) : 678-687. doi: 10.3934/proc.2003.2003.678

[2]

Jochen Merker. Generalizations of logarithmic Sobolev inequalities. Discrete & Continuous Dynamical Systems - S, 2008, 1 (2) : 329-338. doi: 10.3934/dcdss.2008.1.329

[3]

Sergio R. López-Permouth, Benigno R. Parra-Avila, Steve Szabo. Dual generalizations of the concept of cyclicity of codes. Advances in Mathematics of Communications, 2009, 3 (3) : 227-234. doi: 10.3934/amc.2009.3.227

[4]

John Kerin, Hans Engler. On the Lorenz '96 model and some generalizations. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021064

[5]

A. Debussche, R. Temam. Some new generalizations of inertial manifolds. Discrete & Continuous Dynamical Systems, 1996, 2 (4) : 543-558. doi: 10.3934/dcds.1996.2.543

[6]

Uri M. Ascher. Discrete processes and their continuous limits. Journal of Dynamics & Games, 2020, 7 (2) : 123-140. doi: 10.3934/jdg.2020008

[7]

Dmitry Jakobson. On quantum limits on flat tori. Electronic Research Announcements, 1995, 1: 80-86.

[8]

Tobias Wichtrey. Harmonic limits of dynamical systems. Conference Publications, 2011, 2011 (Special) : 1432-1439. doi: 10.3934/proc.2011.2011.1432

[9]

Eric Babson and Dmitry N. Kozlov. Topological obstructions to graph colorings. Electronic Research Announcements, 2003, 9: 61-68.

[10]

J. William Hoffman. Remarks on the zeta function of a graph. Conference Publications, 2003, 2003 (Special) : 413-422. doi: 10.3934/proc.2003.2003.413

[11]

John Kieffer and En-hui Yang. Ergodic behavior of graph entropy. Electronic Research Announcements, 1997, 3: 11-16.

[12]

Roberto De Leo, James A. Yorke. The graph of the logistic map is a tower. Discrete & Continuous Dynamical Systems, 2021, 41 (11) : 5243-5269. doi: 10.3934/dcds.2021075

[13]

Miroslav Bulíček, Josef Málek, K. R. Rajagopal. On Kelvin-Voigt model and its generalizations. Evolution Equations & Control Theory, 2012, 1 (1) : 17-42. doi: 10.3934/eect.2012.1.17

[14]

Koray Karabina, Edward Knapp, Alfred Menezes. Generalizations of Verheul's theorem to asymmetric pairings. Advances in Mathematics of Communications, 2013, 7 (1) : 103-111. doi: 10.3934/amc.2013.7.103

[15]

Shiping Cao, Anthony Coniglio, Xueyan Niu, Richard H. Rand, Robert S. Strichartz. The mathieu differential equation and generalizations to infinite fractafolds. Communications on Pure & Applied Analysis, 2020, 19 (3) : 1795-1845. doi: 10.3934/cpaa.2020073

[16]

Roy H. Goodman. NLS bifurcations on the bowtie combinatorial graph and the dumbbell metric graph. Discrete & Continuous Dynamical Systems, 2019, 39 (4) : 2203-2232. doi: 10.3934/dcds.2019093

[17]

Guillaume Bal, Tomasz Komorowski, Lenya Ryzhik. Kinetic limits for waves in a random medium. Kinetic & Related Models, 2010, 3 (4) : 529-644. doi: 10.3934/krm.2010.3.529

[18]

Menglu Feng, Mei Choi Chiu, Hoi Ying Wong. Pairs trading with illiquidity and position limits. Journal of Industrial & Management Optimization, 2020, 16 (6) : 2991-3009. doi: 10.3934/jimo.2019090

[19]

Agnese Di Castro, Mayte Pérez-Llanos, José Miguel Urbano. Limits of anisotropic and degenerate elliptic problems. Communications on Pure & Applied Analysis, 2012, 11 (3) : 1217-1229. doi: 10.3934/cpaa.2012.11.1217

[20]

Martin D. Buhmann, Slawomir Dinew. Limits of radial basis function interpolants. Communications on Pure & Applied Analysis, 2007, 6 (3) : 569-585. doi: 10.3934/cpaa.2007.6.569

2020 Impact Factor: 0.929

Metrics

  • PDF downloads (107)
  • HTML views (0)
  • Cited by (2)

Other articles
by authors

[Back to Top]