2010, 17: 104-121. doi: 10.3934/era.2010.17.104

Notes on monotone Lagrangian twist tori

1. 

Moscow Center for Continuous Mathematical Education, B. Vlasievsky per. 11, Moscow 121002, Russian Federation

2. 

Institut de Mathématiques, Université de Neuchâtel, Rue Émile Argand 11, CP 158, 2009 Neuchâtel, Switzerland

Received  April 2010 Revised  July 2010 Published  October 2010

We construct monotone Lagrangian tori in the standard symplectic vector space, in the complex projective space and in products of spheres. We explain how to classify these Lagrangian tori up to symplectomorphism and Hamiltonian isotopy, and how to show that they are not displaceable by Hamiltonian isotopies.
Citation: Yuri Chekanov, Felix Schlenk. Notes on monotone Lagrangian twist tori. Electronic Research Announcements, 2010, 17: 104-121. doi: 10.3934/era.2010.17.104
References:
[1]

Comm. Pure Appl. Math., 61 (2008), 1046-1051. doi: doi:10.1002/cpa.20216.  Google Scholar

[2]

Funkcional. Anal. i Prilozen., 1 (1967), 1-14. doi: doi:10.1007/BF01075861.  Google Scholar

[3]

J. Gökova Geom. Topol., 1 (2007), 51-91.  Google Scholar

[4]

in "New Perspectives and Challenges in Symplectic Field Theory," CRM Proc. Lecture Notes 49, AMS, (2009), 1-44.  Google Scholar

[5]

Geom. Topol., 13 (2009), 2881-2989. doi: doi:10.2140/gt.2009.13.2881.  Google Scholar

[6]

Math. Z., 223 (1996), 547-559.  Google Scholar

[7]

Duke Math. J., 95 (1998), 213-226. doi: doi:10.1215/S0012-7094-98-09506-0.  Google Scholar

[8]

Yu. Chekanov and F. Schlenk, Twist tori I: Construction and classification,, in preparation., ().   Google Scholar

[9]

Yu. Chekanov and F. Schlenk, Twist tori II: Non-displaceability,, in preparation., ().   Google Scholar

[10]

Int. Math. Res. Not., 35 (2004), 1803-1843. doi: doi:10.1155/S1073792804132716.  Google Scholar

[11]

Graduate Texts in Mathematics 150, Springer-Verlag, New York, 1995.  Google Scholar

[12]

in "Geometric Topology (Athens, GA, 1993)," AMS/IP Stud. Adv. Math. 2.1, AMS, (1997), 313-327.  Google Scholar

[13]

Ya. Eliashberg and L. Polterovich, Symplectic quasi-states on the quadric surface and Lagrangian submanifolds,, , ().   Google Scholar

[14]

Compos. Math., 145 (2009), 773-826. doi: doi:10.1112/S0010437X0900400X.  Google Scholar

[15]

J. Differential Geom., 28 (1988), 513-547.  Google Scholar

[16]

AMS/IP Studies in Advanced Mathematics 46.1, AMS, International Press, Somerville, MA, 2009.  Google Scholar

[17]

AMS/IP Studies in Advanced Mathematics 46.2, AMS, International Press, Somerville, MA, 2009.  Google Scholar

[18]

K. Fukaya, Y.-G. Oh, H. Ohta and K. Ono, Toric degeneration and non-displaceable Lagrangian tori in $S^2 \times S^2$,, \arXiv{1002.1660}., ().   Google Scholar

[19]

A. Gadbled, Exotic Hamiltonian tori in $\CP^2$ and $S^2 \times S^2$,, in preparation., ().   Google Scholar

[20]

Invent. math., 82 (1985), 307-347.  Google Scholar

[21]

Proc. Roy. Soc. Edinburgh Sect. A , 115 (1990), 25-38.  Google Scholar

[22]

Cambridge Studies in Advanced Mathematics 38, Cambridge University Press, Cambridge, 1994.  Google Scholar

show all references

References:
[1]

Comm. Pure Appl. Math., 61 (2008), 1046-1051. doi: doi:10.1002/cpa.20216.  Google Scholar

[2]

Funkcional. Anal. i Prilozen., 1 (1967), 1-14. doi: doi:10.1007/BF01075861.  Google Scholar

[3]

J. Gökova Geom. Topol., 1 (2007), 51-91.  Google Scholar

[4]

in "New Perspectives and Challenges in Symplectic Field Theory," CRM Proc. Lecture Notes 49, AMS, (2009), 1-44.  Google Scholar

[5]

Geom. Topol., 13 (2009), 2881-2989. doi: doi:10.2140/gt.2009.13.2881.  Google Scholar

[6]

Math. Z., 223 (1996), 547-559.  Google Scholar

[7]

Duke Math. J., 95 (1998), 213-226. doi: doi:10.1215/S0012-7094-98-09506-0.  Google Scholar

[8]

Yu. Chekanov and F. Schlenk, Twist tori I: Construction and classification,, in preparation., ().   Google Scholar

[9]

Yu. Chekanov and F. Schlenk, Twist tori II: Non-displaceability,, in preparation., ().   Google Scholar

[10]

Int. Math. Res. Not., 35 (2004), 1803-1843. doi: doi:10.1155/S1073792804132716.  Google Scholar

[11]

Graduate Texts in Mathematics 150, Springer-Verlag, New York, 1995.  Google Scholar

[12]

in "Geometric Topology (Athens, GA, 1993)," AMS/IP Stud. Adv. Math. 2.1, AMS, (1997), 313-327.  Google Scholar

[13]

Ya. Eliashberg and L. Polterovich, Symplectic quasi-states on the quadric surface and Lagrangian submanifolds,, , ().   Google Scholar

[14]

Compos. Math., 145 (2009), 773-826. doi: doi:10.1112/S0010437X0900400X.  Google Scholar

[15]

J. Differential Geom., 28 (1988), 513-547.  Google Scholar

[16]

AMS/IP Studies in Advanced Mathematics 46.1, AMS, International Press, Somerville, MA, 2009.  Google Scholar

[17]

AMS/IP Studies in Advanced Mathematics 46.2, AMS, International Press, Somerville, MA, 2009.  Google Scholar

[18]

K. Fukaya, Y.-G. Oh, H. Ohta and K. Ono, Toric degeneration and non-displaceable Lagrangian tori in $S^2 \times S^2$,, \arXiv{1002.1660}., ().   Google Scholar

[19]

A. Gadbled, Exotic Hamiltonian tori in $\CP^2$ and $S^2 \times S^2$,, in preparation., ().   Google Scholar

[20]

Invent. math., 82 (1985), 307-347.  Google Scholar

[21]

Proc. Roy. Soc. Edinburgh Sect. A , 115 (1990), 25-38.  Google Scholar

[22]

Cambridge Studies in Advanced Mathematics 38, Cambridge University Press, Cambridge, 1994.  Google Scholar

[1]

Patrick Henning, Anders M. N. Niklasson. Shadow Lagrangian dynamics for superfluidity. Kinetic & Related Models, 2021, 14 (2) : 303-321. doi: 10.3934/krm.2021006

[2]

Anton Schiela, Julian Ortiz. Second order directional shape derivatives of integrals on submanifolds. Mathematical Control & Related Fields, 2021  doi: 10.3934/mcrf.2021017

[3]

Manuel de León, Víctor M. Jiménez, Manuel Lainz. Contact Hamiltonian and Lagrangian systems with nonholonomic constraints. Journal of Geometric Mechanics, 2021, 13 (1) : 25-53. doi: 10.3934/jgm.2021001

[4]

Knut Hüper, Irina Markina, Fátima Silva Leite. A Lagrangian approach to extremal curves on Stiefel manifolds. Journal of Geometric Mechanics, 2021, 13 (1) : 55-72. doi: 10.3934/jgm.2020031

[5]

Guido De Philippis, Antonio De Rosa, Jonas Hirsch. The area blow up set for bounded mean curvature submanifolds with respect to elliptic surface energy functionals. Discrete & Continuous Dynamical Systems, 2019, 39 (12) : 7031-7056. doi: 10.3934/dcds.2019243

[6]

Bochao Chen, Yixian Gao. Quasi-periodic travelling waves for beam equations with damping on 3-dimensional rectangular tori. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021075

2019 Impact Factor: 0.5

Metrics

  • PDF downloads (118)
  • HTML views (0)
  • Cited by (11)

Other articles
by authors

[Back to Top]