-
Previous Article
Curvature bounded below: A definition a la Berg--Nikolaev
- ERA-MS Home
- This Volume
-
Next Article
Fourier analysis methods in operator ergodic theory on super-reflexive Banach spaces
Notes on monotone Lagrangian twist tori
1. | Moscow Center for Continuous Mathematical Education, B. Vlasievsky per. 11, Moscow 121002, Russian Federation |
2. | Institut de Mathématiques, Université de Neuchâtel, Rue Émile Argand 11, CP 158, 2009 Neuchâtel, Switzerland |
References:
[1] |
Comm. Pure Appl. Math., 61 (2008), 1046-1051.
doi: doi:10.1002/cpa.20216. |
[2] |
Funkcional. Anal. i Prilozen., 1 (1967), 1-14.
doi: doi:10.1007/BF01075861. |
[3] |
J. Gökova Geom. Topol., 1 (2007), 51-91. |
[4] |
in "New Perspectives and Challenges in Symplectic Field Theory," CRM Proc. Lecture Notes 49, AMS, (2009), 1-44. |
[5] |
Geom. Topol., 13 (2009), 2881-2989.
doi: doi:10.2140/gt.2009.13.2881. |
[6] |
Math. Z., 223 (1996), 547-559. |
[7] |
Duke Math. J., 95 (1998), 213-226.
doi: doi:10.1215/S0012-7094-98-09506-0. |
[8] |
Yu. Chekanov and F. Schlenk, Twist tori I: Construction and classification,, in preparation., (). Google Scholar |
[9] |
Yu. Chekanov and F. Schlenk, Twist tori II: Non-displaceability,, in preparation., (). Google Scholar |
[10] |
Int. Math. Res. Not., 35 (2004), 1803-1843.
doi: doi:10.1155/S1073792804132716. |
[11] |
Graduate Texts in Mathematics 150, Springer-Verlag, New York, 1995. |
[12] |
in "Geometric Topology (Athens, GA, 1993)," AMS/IP Stud. Adv. Math. 2.1, AMS, (1997), 313-327. |
[13] |
Ya. Eliashberg and L. Polterovich, Symplectic quasi-states on the quadric surface and Lagrangian submanifolds,, , (). Google Scholar |
[14] |
Compos. Math., 145 (2009), 773-826.
doi: doi:10.1112/S0010437X0900400X. |
[15] |
J. Differential Geom., 28 (1988), 513-547. |
[16] |
AMS/IP Studies in Advanced Mathematics 46.1, AMS, International Press, Somerville, MA, 2009. |
[17] |
AMS/IP Studies in Advanced Mathematics 46.2, AMS, International Press, Somerville, MA, 2009. |
[18] |
K. Fukaya, Y.-G. Oh, H. Ohta and K. Ono, Toric degeneration and non-displaceable Lagrangian tori in $S^2 \times S^2$,, \arXiv{1002.1660}., (). Google Scholar |
[19] |
A. Gadbled, Exotic Hamiltonian tori in $\CP^2$ and $S^2 \times S^2$,, in preparation., (). Google Scholar |
[20] |
Invent. math., 82 (1985), 307-347. |
[21] |
Proc. Roy. Soc. Edinburgh Sect. A , 115 (1990), 25-38. |
[22] |
Cambridge Studies in Advanced Mathematics 38, Cambridge University Press, Cambridge, 1994. |
show all references
References:
[1] |
Comm. Pure Appl. Math., 61 (2008), 1046-1051.
doi: doi:10.1002/cpa.20216. |
[2] |
Funkcional. Anal. i Prilozen., 1 (1967), 1-14.
doi: doi:10.1007/BF01075861. |
[3] |
J. Gökova Geom. Topol., 1 (2007), 51-91. |
[4] |
in "New Perspectives and Challenges in Symplectic Field Theory," CRM Proc. Lecture Notes 49, AMS, (2009), 1-44. |
[5] |
Geom. Topol., 13 (2009), 2881-2989.
doi: doi:10.2140/gt.2009.13.2881. |
[6] |
Math. Z., 223 (1996), 547-559. |
[7] |
Duke Math. J., 95 (1998), 213-226.
doi: doi:10.1215/S0012-7094-98-09506-0. |
[8] |
Yu. Chekanov and F. Schlenk, Twist tori I: Construction and classification,, in preparation., (). Google Scholar |
[9] |
Yu. Chekanov and F. Schlenk, Twist tori II: Non-displaceability,, in preparation., (). Google Scholar |
[10] |
Int. Math. Res. Not., 35 (2004), 1803-1843.
doi: doi:10.1155/S1073792804132716. |
[11] |
Graduate Texts in Mathematics 150, Springer-Verlag, New York, 1995. |
[12] |
in "Geometric Topology (Athens, GA, 1993)," AMS/IP Stud. Adv. Math. 2.1, AMS, (1997), 313-327. |
[13] |
Ya. Eliashberg and L. Polterovich, Symplectic quasi-states on the quadric surface and Lagrangian submanifolds,, , (). Google Scholar |
[14] |
Compos. Math., 145 (2009), 773-826.
doi: doi:10.1112/S0010437X0900400X. |
[15] |
J. Differential Geom., 28 (1988), 513-547. |
[16] |
AMS/IP Studies in Advanced Mathematics 46.1, AMS, International Press, Somerville, MA, 2009. |
[17] |
AMS/IP Studies in Advanced Mathematics 46.2, AMS, International Press, Somerville, MA, 2009. |
[18] |
K. Fukaya, Y.-G. Oh, H. Ohta and K. Ono, Toric degeneration and non-displaceable Lagrangian tori in $S^2 \times S^2$,, \arXiv{1002.1660}., (). Google Scholar |
[19] |
A. Gadbled, Exotic Hamiltonian tori in $\CP^2$ and $S^2 \times S^2$,, in preparation., (). Google Scholar |
[20] |
Invent. math., 82 (1985), 307-347. |
[21] |
Proc. Roy. Soc. Edinburgh Sect. A , 115 (1990), 25-38. |
[22] |
Cambridge Studies in Advanced Mathematics 38, Cambridge University Press, Cambridge, 1994. |
[1] |
Patrick Henning, Anders M. N. Niklasson. Shadow Lagrangian dynamics for superfluidity. Kinetic & Related Models, 2021, 14 (2) : 303-321. doi: 10.3934/krm.2021006 |
[2] |
Anton Schiela, Julian Ortiz. Second order directional shape derivatives of integrals on submanifolds. Mathematical Control & Related Fields, 2021 doi: 10.3934/mcrf.2021017 |
[3] |
Manuel de León, Víctor M. Jiménez, Manuel Lainz. Contact Hamiltonian and Lagrangian systems with nonholonomic constraints. Journal of Geometric Mechanics, 2021, 13 (1) : 25-53. doi: 10.3934/jgm.2021001 |
[4] |
Knut Hüper, Irina Markina, Fátima Silva Leite. A Lagrangian approach to extremal curves on Stiefel manifolds. Journal of Geometric Mechanics, 2021, 13 (1) : 55-72. doi: 10.3934/jgm.2020031 |
[5] |
Guido De Philippis, Antonio De Rosa, Jonas Hirsch. The area blow up set for bounded mean curvature submanifolds with respect to elliptic surface energy functionals. Discrete & Continuous Dynamical Systems, 2019, 39 (12) : 7031-7056. doi: 10.3934/dcds.2019243 |
[6] |
Bochao Chen, Yixian Gao. Quasi-periodic travelling waves for beam equations with damping on 3-dimensional rectangular tori. Discrete & Continuous Dynamical Systems - B, 2021 doi: 10.3934/dcdsb.2021075 |
2019 Impact Factor: 0.5
Tools
Metrics
Other articles
by authors
[Back to Top]