- Previous Article
- ERA-MS Home
- This Volume
-
Next Article
The equivariant index theorem for transversally elliptic operators and the basic index theorem for Riemannian foliations
On almost Poisson commutativity in dimension two
1. | Max Planck Institute for Mathematics in the Sciences, Inselstrasse 22, 04103 Leipzig, Germany |
References:
[1] |
J. F. Aarnes, Quasi-states and quasi-measures, Adv. Math., 86 (1991), 41-67.
doi: 10.1016/0001-8708(91)90035-6. |
[2] |
L. Buhovski, The 2/3 - convergence rate for the Poisson bracket, Geom. Funct. Anal., 19 (2010), 1620-1649.
doi: 10.1007/s00039-010-0045-z. |
[3] |
F. Cardin and C. Viterbo, Commuting Hamiltonians and Hamilton-Jacobi multi-time equations, Duke Math. J., 144 (2008), 235-284.
doi: 10.1215/00127094-2008-036. |
[4] |
M. Entov and L. Polterovich, Quasi-states and symplectic intersections, Comment. Math. Helv., 81 (2006), 75-99.
doi: 10.4171/CMH/43. |
[5] |
M. Entov and L. Polterovich, ($C^0$)-rigidity of Poisson brackets, Symplectic topology and measure preserving dynamical systems, 25-32, Contemp. Math., 512, Amer. Math. Soc., Providence, RI, 2010. |
[6] |
M. Entov, L. Polterovich and D. Rosen, Poisson brackets, quasi-states and symplectic integrators, preprint, arXiv:0910.1980. |
[7] |
M. Entov, L. Polterovich and F. Zapolsky, Quasi-morphisms and the Poisson bracket, Pure Appl. Math. Q., Special Issue: In honor of Grigory Margulis. Part 1, 3 (2007), 1037-1055. |
[8] |
H. Federer, "Geometric Measure Theory," Die Grundl. der math. Wiss., vol. 153, Springer-Verlag New York Inc., New York 1969. |
[9] |
C. Pearcy and A. Shields, Almost commuting matrices, J. Funct. Anal., 33 (1979), 332-338.
doi: 10.1016/0022-1236(79)90071-5. |
[10] |
F. Zapolsky, Quasi-states and the Poisson bracket on surfaces, J. Mod. Dyn., 1 (2007), 465-475. |
show all references
References:
[1] |
J. F. Aarnes, Quasi-states and quasi-measures, Adv. Math., 86 (1991), 41-67.
doi: 10.1016/0001-8708(91)90035-6. |
[2] |
L. Buhovski, The 2/3 - convergence rate for the Poisson bracket, Geom. Funct. Anal., 19 (2010), 1620-1649.
doi: 10.1007/s00039-010-0045-z. |
[3] |
F. Cardin and C. Viterbo, Commuting Hamiltonians and Hamilton-Jacobi multi-time equations, Duke Math. J., 144 (2008), 235-284.
doi: 10.1215/00127094-2008-036. |
[4] |
M. Entov and L. Polterovich, Quasi-states and symplectic intersections, Comment. Math. Helv., 81 (2006), 75-99.
doi: 10.4171/CMH/43. |
[5] |
M. Entov and L. Polterovich, ($C^0$)-rigidity of Poisson brackets, Symplectic topology and measure preserving dynamical systems, 25-32, Contemp. Math., 512, Amer. Math. Soc., Providence, RI, 2010. |
[6] |
M. Entov, L. Polterovich and D. Rosen, Poisson brackets, quasi-states and symplectic integrators, preprint, arXiv:0910.1980. |
[7] |
M. Entov, L. Polterovich and F. Zapolsky, Quasi-morphisms and the Poisson bracket, Pure Appl. Math. Q., Special Issue: In honor of Grigory Margulis. Part 1, 3 (2007), 1037-1055. |
[8] |
H. Federer, "Geometric Measure Theory," Die Grundl. der math. Wiss., vol. 153, Springer-Verlag New York Inc., New York 1969. |
[9] |
C. Pearcy and A. Shields, Almost commuting matrices, J. Funct. Anal., 33 (1979), 332-338.
doi: 10.1016/0022-1236(79)90071-5. |
[10] |
F. Zapolsky, Quasi-states and the Poisson bracket on surfaces, J. Mod. Dyn., 1 (2007), 465-475. |
[1] |
Frol Zapolsky. Quasi-states and the Poisson bracket on surfaces. Journal of Modern Dynamics, 2007, 1 (3) : 465-475. doi: 10.3934/jmd.2007.1.465 |
[2] |
Karina Samvelyan, Frol Zapolsky. Rigidity of the ${{L}^{p}}$-norm of the Poisson bracket on surfaces. Electronic Research Announcements, 2017, 24: 28-37. doi: 10.3934/era.2017.24.004 |
[3] |
Sobhan Seyfaddini. Spectral killers and Poisson bracket invariants. Journal of Modern Dynamics, 2015, 9: 51-66. doi: 10.3934/jmd.2015.9.51 |
[4] |
Francisco Crespo, Francisco Javier Molero, Sebastián Ferrer. Poisson and integrable systems through the Nambu bracket and its Jacobi multiplier. Journal of Geometric Mechanics, 2016, 8 (2) : 169-178. doi: 10.3934/jgm.2016002 |
[5] |
Ermal Feleqi, Franco Rampazzo. Integral representations for bracket-generating multi-flows. Discrete and Continuous Dynamical Systems, 2015, 35 (9) : 4345-4366. doi: 10.3934/dcds.2015.35.4345 |
[6] |
Nancy López Reyes, Luis E. Benítez Babilonia. A discrete hierarchy of double bracket equations and a class of negative power series. Mathematical Control and Related Fields, 2017, 7 (1) : 41-52. doi: 10.3934/mcrf.2017003 |
[7] |
Christopher Griffin, James Fan. Control problems with vanishing Lie Bracket arising from complete odd circulant evolutionary games. Journal of Dynamics and Games, 2022, 9 (2) : 165-189. doi: 10.3934/jdg.2022002 |
[8] |
Alfonso Artigue. Expansive flows of surfaces. Discrete and Continuous Dynamical Systems, 2013, 33 (2) : 505-525. doi: 10.3934/dcds.2013.33.505 |
[9] |
Kariane Calta, John Smillie. Algebraically periodic translation surfaces. Journal of Modern Dynamics, 2008, 2 (2) : 209-248. doi: 10.3934/jmd.2008.2.209 |
[10] |
Anton Petrunin. Correction to: Metric minimizing surfaces. Electronic Research Announcements, 2018, 25: 96-96. doi: 10.3934/era.2018.25.010 |
[11] |
Anton Petrunin. Metric minimizing surfaces. Electronic Research Announcements, 1999, 5: 47-54. |
[12] |
Siran Li, Jiahong Wu, Kun Zhao. On the degenerate boussinesq equations on surfaces. Journal of Geometric Mechanics, 2020, 12 (1) : 107-140. doi: 10.3934/jgm.2020006 |
[13] |
Yong Lin, Gábor Lippner, Dan Mangoubi, Shing-Tung Yau. Nodal geometry of graphs on surfaces. Discrete and Continuous Dynamical Systems, 2010, 28 (3) : 1291-1298. doi: 10.3934/dcds.2010.28.1291 |
[14] |
Gabriele Beltramo, Primoz Skraba, Rayna Andreeva, Rik Sarkar, Ylenia Giarratano, Miguel O. Bernabeu. Euler characteristic surfaces. Foundations of Data Science, 2021 doi: 10.3934/fods.2021027 |
[15] |
Eduard Duryev, Charles Fougeron, Selim Ghazouani. Dilation surfaces and their Veech groups. Journal of Modern Dynamics, 2019, 14: 121-151. doi: 10.3934/jmd.2019005 |
[16] |
Alexandre Girouard, Iosif Polterovich. Upper bounds for Steklov eigenvalues on surfaces. Electronic Research Announcements, 2012, 19: 77-85. doi: 10.3934/era.2012.19.77 |
[17] |
Seung Won Kim, P. Christopher Staecker. Dynamics of random selfmaps of surfaces with boundary. Discrete and Continuous Dynamical Systems, 2014, 34 (2) : 599-611. doi: 10.3934/dcds.2014.34.599 |
[18] |
Roberto Paroni, Podio-Guidugli Paolo, Brian Seguin. On the nonlocal curvatures of surfaces with or without boundary. Communications on Pure and Applied Analysis, 2018, 17 (2) : 709-727. doi: 10.3934/cpaa.2018037 |
[19] |
José Ginés Espín Buendía, Daniel Peralta-salas, Gabriel Soler López. Existence of minimal flows on nonorientable surfaces. Discrete and Continuous Dynamical Systems, 2017, 37 (8) : 4191-4211. doi: 10.3934/dcds.2017178 |
[20] |
Gareth Ainsworth. The attenuated magnetic ray transform on surfaces. Inverse Problems and Imaging, 2013, 7 (1) : 27-46. doi: 10.3934/ipi.2013.7.27 |
2020 Impact Factor: 0.929
Tools
Metrics
Other articles
by authors
[Back to Top]