\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Hölder cocycles and ergodic integrals for translation flows on flat surfaces

Abstract Related Papers Cited by
  • The main results announced in this note are an asymptotic expansion for ergodic integrals of translation flows on flat surfaces of higher genus (Theorem 1) and a limit theorem for such flows (Theorem 2). Given an abelian differential on a compact oriented surface, consider the space $\mathfrak B^+$ of Hölder cocycles over the corresponding vertical flow that are invariant under holonomy by the horizontal flow. Cocycles in $\mathfrak B^+$ are closely related to G.Forni's invariant distributions for translation flows [10]. Theorem 1 states that ergodic integrals of Lipschitz functions are approximated by cocycles in $\mathfrak B^+$ up to an error that grows more slowly than any power of time. Theorem 2 is obtained using the renormalizing action of the Teichmüller flow on the space $\mathfrak B^+$. A symbolic representation of translation flows as suspension flows over Vershik's automorphisms allows one to construct cocycles in $\mathfrak B^+$ explicitly. Proofs of Theorems 1, 2 are given in [5].
    Mathematics Subject Classification: Primary: 37A50; Secondary: 60F99.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(111) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return