-
Previous Article
Longitudinal foliation rigidity and Lipschitz-continuous invariant forms for hyperbolic flows
- ERA-MS Home
- This Volume
-
Next Article
Linear approximate groups
Local rigidity of partially hyperbolic actions
1. | Department of Mathematics, The Pennsylvania State University, University Park, PA 16802, United States |
References:
[1] |
M. Brin, Y. Pesin, Partially hyperbolic dynamical systems, (Russian) Izv. Akad. Nauk SSSR Ser. Mat., 38 (1974), 170-212. |
[2] |
D. Damjanovic and A. Katok, Periodic cycle functionals and Cocycle rigidity for certain partially hyperbolic $\RR^k$ actions, Discr. Cont. Dyn.Syst., 13 (2005), 985-1005. |
[3] |
D. Damjanovic and A. Katok, Local rigidity of partially hyperbolic actions. II. The geometric method and restrictions of Weyl Chamber flows on $SL(n,\RR)/\Gamma$,, , ().
|
[4] |
D. Damjanovic and A. Katok, Local rigidity of partially hyperbolic actions. I. KAM method and $\ZZ^k$ actions on the torus, Annals of Math, 2010, to appear. |
[5] |
D. Damjanovic, Central extensions of simple Lie groups and rigidity of some abelian partially hyperbolic algebraic actions, J. Modern Dyn., 1 (2007), 665-688. |
[6] |
Vinay V. Deodhar, On central extensions of rational points of algebraic groups, Amer. J. Math., 100 (1978), 303-386.
doi: doi:10.2307/2373853. |
[7] |
A. J. Hahn and O. T. O'Meara, The classical groups and K-theory, Springer Verlag, Berlin, 1980, 55-58. |
[8] |
M. Hirsch, C. Pugh and M. Shub, "Invariant Manifolds. Lecture Notes in Mathematics," 583, Springer Verlag, Berlin, 1977. |
[9] |
A. Katok and R. Spatzier, Differential rigidity of Anosov actions of higher rank abelian groups and algebraic lattice actions, Proc. Steklov Inst. Math., 216 (1997), 287-314. |
[10] |
G. A. Margulis, "Discrete Subgroups of Semisimple Lie Groups," Springer-Verlag, 1991. |
[11] |
G. A. Margulis and N. Qian, Rigidity of weakly hyperbolic actions of higher real rank semisimple Lie groups and their lattices, Ergodic Theory Dynam. Systems, 21 (2001), 121-164.
doi: doi:10.1017/S0143385701001109. |
[12] |
R. Steinberg, Generateurs, relations et revetements de groupes algebriques, Colloque de Bruxelles, 1962, 113-127. |
show all references
References:
[1] |
M. Brin, Y. Pesin, Partially hyperbolic dynamical systems, (Russian) Izv. Akad. Nauk SSSR Ser. Mat., 38 (1974), 170-212. |
[2] |
D. Damjanovic and A. Katok, Periodic cycle functionals and Cocycle rigidity for certain partially hyperbolic $\RR^k$ actions, Discr. Cont. Dyn.Syst., 13 (2005), 985-1005. |
[3] |
D. Damjanovic and A. Katok, Local rigidity of partially hyperbolic actions. II. The geometric method and restrictions of Weyl Chamber flows on $SL(n,\RR)/\Gamma$,, , ().
|
[4] |
D. Damjanovic and A. Katok, Local rigidity of partially hyperbolic actions. I. KAM method and $\ZZ^k$ actions on the torus, Annals of Math, 2010, to appear. |
[5] |
D. Damjanovic, Central extensions of simple Lie groups and rigidity of some abelian partially hyperbolic algebraic actions, J. Modern Dyn., 1 (2007), 665-688. |
[6] |
Vinay V. Deodhar, On central extensions of rational points of algebraic groups, Amer. J. Math., 100 (1978), 303-386.
doi: doi:10.2307/2373853. |
[7] |
A. J. Hahn and O. T. O'Meara, The classical groups and K-theory, Springer Verlag, Berlin, 1980, 55-58. |
[8] |
M. Hirsch, C. Pugh and M. Shub, "Invariant Manifolds. Lecture Notes in Mathematics," 583, Springer Verlag, Berlin, 1977. |
[9] |
A. Katok and R. Spatzier, Differential rigidity of Anosov actions of higher rank abelian groups and algebraic lattice actions, Proc. Steklov Inst. Math., 216 (1997), 287-314. |
[10] |
G. A. Margulis, "Discrete Subgroups of Semisimple Lie Groups," Springer-Verlag, 1991. |
[11] |
G. A. Margulis and N. Qian, Rigidity of weakly hyperbolic actions of higher real rank semisimple Lie groups and their lattices, Ergodic Theory Dynam. Systems, 21 (2001), 121-164.
doi: doi:10.1017/S0143385701001109. |
[12] |
R. Steinberg, Generateurs, relations et revetements de groupes algebriques, Colloque de Bruxelles, 1962, 113-127. |
[1] |
Qiao Liu. Local rigidity of certain solvable group actions on tori. Discrete and Continuous Dynamical Systems, 2021, 41 (2) : 553-567. doi: 10.3934/dcds.2020269 |
[2] |
Woochul Jung, Keonhee Lee, Carlos Morales, Jumi Oh. Rigidity of random group actions. Discrete and Continuous Dynamical Systems, 2020, 40 (12) : 6845-6854. doi: 10.3934/dcds.2020130 |
[3] |
Zhenqi Jenny Wang. Local rigidity of partially hyperbolic actions. Journal of Modern Dynamics, 2010, 4 (2) : 271-327. doi: 10.3934/jmd.2010.4.271 |
[4] |
A. Katok and R. J. Spatzier. Nonstationary normal forms and rigidity of group actions. Electronic Research Announcements, 1996, 2: 124-133. |
[5] |
Danijela Damjanovic, Anatole Katok. Local rigidity of homogeneous parabolic actions: I. A model case. Journal of Modern Dynamics, 2011, 5 (2) : 203-235. doi: 10.3934/jmd.2011.5.203 |
[6] |
Danijela Damjanovic and Anatole Katok. Local rigidity of actions of higher rank abelian groups and KAM method. Electronic Research Announcements, 2004, 10: 142-154. |
[7] |
Masayuki Asaoka. Local rigidity of homogeneous actions of parabolic subgroups of rank-one Lie groups. Journal of Modern Dynamics, 2015, 9: 191-201. doi: 10.3934/jmd.2015.9.191 |
[8] |
Mao Okada. Local rigidity of certain actions of solvable groups on the boundaries of rank-one symmetric spaces. Journal of Modern Dynamics, 2021, 17: 111-143. doi: 10.3934/jmd.2021004 |
[9] |
Kurt Vinhage. On the rigidity of Weyl chamber flows and Schur multipliers as topological groups. Journal of Modern Dynamics, 2015, 9: 25-49. doi: 10.3934/jmd.2015.9.25 |
[10] |
Kesong Yan, Qian Liu, Fanping Zeng. Classification of transitive group actions. Discrete and Continuous Dynamical Systems, 2021, 41 (12) : 5579-5607. doi: 10.3934/dcds.2021089 |
[11] |
Franz W. Kamber and Peter W. Michor. Completing Lie algebra actions to Lie group actions. Electronic Research Announcements, 2004, 10: 1-10. |
[12] |
Danijela Damjanović, James Tanis. Cocycle rigidity and splitting for some discrete parabolic actions. Discrete and Continuous Dynamical Systems, 2014, 34 (12) : 5211-5227. doi: 10.3934/dcds.2014.34.5211 |
[13] |
James Tanis, Zhenqi Jenny Wang. Cohomological equation and cocycle rigidity of discrete parabolic actions. Discrete and Continuous Dynamical Systems, 2019, 39 (7) : 3969-4000. doi: 10.3934/dcds.2019160 |
[14] |
Manfred Einsiedler and Elon Lindenstrauss. Rigidity properties of \zd-actions on tori and solenoids. Electronic Research Announcements, 2003, 9: 99-110. |
[15] |
Andrei Török. Rigidity of partially hyperbolic actions of property (T) groups. Discrete and Continuous Dynamical Systems, 2003, 9 (1) : 193-208. doi: 10.3934/dcds.2003.9.193 |
[16] |
Federico Rodriguez Hertz. Global rigidity of certain Abelian actions by toral automorphisms. Journal of Modern Dynamics, 2007, 1 (3) : 425-442. doi: 10.3934/jmd.2007.1.425 |
[17] |
Dongmei Zheng, Ercai Chen, Jiahong Yang. On large deviations for amenable group actions. Discrete and Continuous Dynamical Systems, 2016, 36 (12) : 7191-7206. doi: 10.3934/dcds.2016113 |
[18] |
Dandan Cheng, Qian Hao, Zhiming Li. Scale pressure for amenable group actions. Communications on Pure and Applied Analysis, 2021, 20 (3) : 1091-1102. doi: 10.3934/cpaa.2021008 |
[19] |
Maik Gröger, Olga Lukina. Measures and stabilizers of group Cantor actions. Discrete and Continuous Dynamical Systems, 2021, 41 (5) : 2001-2029. doi: 10.3934/dcds.2020350 |
[20] |
Tao Yu, Guohua Zhang, Ruifeng Zhang. Discrete spectrum for amenable group actions. Discrete and Continuous Dynamical Systems, 2021, 41 (12) : 5871-5886. doi: 10.3934/dcds.2021099 |
2020 Impact Factor: 0.929
Tools
Metrics
Other articles
by authors
[Back to Top]