Advanced Search
Article Contents
Article Contents

An inverse theorem for the Gowers $U^{s+1}[N]$-norm

Abstract Related Papers Cited by
  • This is an announcement of the proof of the inverse conjecture for the Gowers $U^{s+1}[N]$-norm for all $s \geq 3$; this is new for $s \geq 4$, the cases $s = 1,2,3$ having been previously established. More precisely we outline a proof that if $f : [N] \rightarrow [-1,1]$ is a function with ||$f$|| $U^{s+1}[N] \geq \delta$ then there is a bounded-complexity $s$-step nilsequence $F(g(n)\Gamma)$ which correlates with $f$, where the bounds on the complexity and correlation depend only on $s$ and $\delta$. From previous results, this conjecture implies the Hardy-Littlewood prime tuples conjecture for any linear system of finite complexity. In particular, one obtains an asymptotic formula for the number of $k$-term arithmetic progressions $p_1 < p_2 < ... < p_k \leq N$ of primes, for every $k \geq 3$.
    Mathematics Subject Classification: Primary: 11B99.


    \begin{equation} \\ \end{equation}
  • [1]

    N. Alon, T. Kaufman, M. Krivelevich, S. Litsyn and D. Ron, Testing low-degree polynomials over GF(2), Approximation, Randomization, and Combinatorial Optimization, 2003, 188-199. Also: Testing Reed-Muller codes, IEEE Transactions on Information Theory, 51 (2005), 4032-4039.doi: 10.1109/TIT.2005.856958.


    A. Balog and E. Szemerédi, A statistical theorem of set addition, Combinatorica, 14 (1994), 263-268.doi: 10.1007/BF01212974.


    V. Bergelson, B. Host and B. Kra, Multiple recurrence and nilsequences, (with an appendix by I. Ruzsa), Invent. Math., 160 (2005), 261-303.doi: 10.1007/s00222-004-0428-6.


    V. Bergelson, T. Tao and T. Ziegler, An inverse theorem for uniformity seminorms associated with the action of $F_p^{\infty}$, Geom. Funct. Anal., 19 (2010), 1539-1596.doi: 10.1007/s00039-010-0051-1.


    J.-P. Conze and E. Lesigne, Sur un théorème ergodique pour des mesures diagonales, (French) [On an ergodic theorem for diagonal measures], C. R. Acad. Sci. Paris Sér. I Math., 306 (1988), 491-493.


    N. Frantzikinakis, B. Host and B. Kra, Multiple recurrence and convergence for sequences related to the prime numbers, J. Reine Angew. Math., 611 (2007), 131-144.doi: 10.1515/CRELLE.2007.076.


    G. A. Freĭman, "Foundations of a Structural Theory of Set Addition," Translations of Mathematical Monographs, 37, AMS, Providence, RI, 1973.


    H. Furstenberg, "Nonconventional Ergodic Averages," The legacy of John von Neumann (Hempstead, NY, 1988), 43-56, Proc. Sympos. Pure Math., 50, Amer. Math. Soc., Providence, RI, 1990.


    H. Furstenberg and B. Weiss, "A mean ergodic theorem for $1/N\sum^N_{n=1}f (T^n x)g(T^ {n^ 2}x)$," Convergence in ergodic theory and probability (Columbus, OH, 1993), 193-227, Ohio State Univ. Math. Res. Inst. Publ., 5 de Gruyter, Berlin, 1996.


    W. T. Gowers, A new proof of Szemerédi's theorem for progressions of length four, GAFA, 8 (1998), 529-551.doi: 10.1007/s000390050065.


    -, A new proof of Szemerédi's theorem, GAFA, 11 (2001), 465-588.


    B. Green, "Generalising the Hardy-Littlewood Method for Primes," International Congress of Mathematicians. Vol. II, 373-399, Eur. Math. Soc., Zürich, 2006.


    B. Green and T. Tao, The primes contain arbitrarily long arithmetic progressions, Annals of Math. (2), 167 (2008), 481-547.doi: 10.4007/annals.2008.167.481.


    -An inverse theorem for the Gowers $U^3$-norm, with applications, Proc. Edinburgh Math. Soc., 51, 71-153.


    -, Linear equations in primes, Ann. Math. (2), 171 (2010), 1753-1850.


    -The quantitative behaviour of polynomial orbits on nilmanifolds, to appear in Ann. Math.


    -The Möbius function is strongly orthogonal to nilsequences, to appear in Ann. Math.


    -An arithmetic regularity lemma, associated counting lemma, and applications, in "An Irregular Mind" (Szemerédi is 70), Bolyai Society Mathematical Studies, 21, 261-334.


    B. Green, T. Tao and T. Ziegler, An inverse theorem for the Gowers $U^4[N]$-norm, Glasgow Math. J., 53 (2011), 1-50.doi: 10.1017/S0017089510000546.


    -An inverse theorem for the Gowers $U^{s+1}[N]$ norm, preprint, arXiv:1009.3998.


    I. J. Håland, Uniform distribution of generalized polynomials, J. Number Theory, 45 (1993), 327-366.doi: 10.1006/jnth.1993.1082.


    B. Host and B. Kra, Convergence of Conze-Lesigne averages, Erg. Th. Dyn. Sys., 21 (2001), 493-509.


    -, Averaging along cubes, Modern Dynamical Systems and Applications, Cambridge University Press, Cambridge, (2004), 123-144.


    -, Nonconventional ergodic averages and nilmanifolds, Ann. of Math. (2), 161 (2005), 397-488.


    -, Uniformity seminorms on $l^\infty$ and applications, J. Anal. Math., 108 (2009), 219-276.doi: 10.1007/s11854-009-0024-1.


    A. Leibman, Pointwise convergence of ergodic averages of polynomial sequences of translations on a nilmanifold, Ergodic Theory and Dynamical Systems, 25 (2005), 201-213.doi: 10.1017/S0143385704000215.


    -A canonical form and the distribution of values of generalized polynomials, to appear in Israel Journal of Mathematics.


    E. Lesigne, Équations fonctionnelles, couplages de produits gauches et théorèmes ergodiques pour mesures diagonales, (French) [Functional equations, couplings of skew products, ergodic theorems for diagonal measures], Bull. Soc. Math. France, 121 (1993), 315-351.


    I. Z. Ruzsa, Generalized arithmetical progressions and sumsets, Acta Math. Hungar., 65 (1994), 379-388.doi: 10.1007/BF01876039.


    A. Samorodnitsky, "Low-Degree Tests at Large Distances," STOC'07, Proceedings of the 39th Annual ACM Symposium on Theory of Computing, ACM, New York, (2007), 506-515.


    B. SzegedyHigher order Fourier analysis as an algebraic theory I, preprint, arXiv::0903.0897.


    -Higher order Fourier analysis as an algebraic theory II, preprint, arXiv::0911.1157.


    -Higher order Fourier analysis as an algebraic theory III, preprint, arXiv::1001.4282.


    T. Tao and T. Ziegler, The inverse conjecture for the Gowers norms over finite fields via the correspondence principle, Anal. PDE, 3 (2010), 1-20.doi: 10.2140/apde.2010.3.1.


    T. Tao and V. Vu, "Additive Combinatorics," Cambridge Studies in Advanced Mathematics, 105, Cambridge University Press, Cambridge, 2006.


    T. Ziegler, Universal characteristic factors and Furstenberg averages, J. Amer. Math. Soc., 20 (2007), 53-97.doi: 10.1090/S0894-0347-06-00532-7.

  • 加载中
Open Access Under a Creative Commons license

Article Metrics

HTML views() PDF downloads(246) Cited by(0)

Access History

Other Articles By Authors



    DownLoad:  Full-Size Img  PowerPoint