\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

An inverse theorem for the Gowers $U^{s+1}[N]$-norm

Abstract Related Papers Cited by
  • This is an announcement of the proof of the inverse conjecture for the Gowers $U^{s+1}[N]$-norm for all $s \geq 3$; this is new for $s \geq 4$, the cases $s = 1,2,3$ having been previously established. More precisely we outline a proof that if $f : [N] \rightarrow [-1,1]$ is a function with ||$f$|| $U^{s+1}[N] \geq \delta$ then there is a bounded-complexity $s$-step nilsequence $F(g(n)\Gamma)$ which correlates with $f$, where the bounds on the complexity and correlation depend only on $s$ and $\delta$. From previous results, this conjecture implies the Hardy-Littlewood prime tuples conjecture for any linear system of finite complexity. In particular, one obtains an asymptotic formula for the number of $k$-term arithmetic progressions $p_1 < p_2 < ... < p_k \leq N$ of primes, for every $k \geq 3$.
    Mathematics Subject Classification: Primary: 11B99.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    N. Alon, T. Kaufman, M. Krivelevich, S. Litsyn and D. Ron, Testing low-degree polynomials over GF(2), Approximation, Randomization, and Combinatorial Optimization, 2003, 188-199. Also: Testing Reed-Muller codes, IEEE Transactions on Information Theory, 51 (2005), 4032-4039.doi: 10.1109/TIT.2005.856958.

    [2]

    A. Balog and E. Szemerédi, A statistical theorem of set addition, Combinatorica, 14 (1994), 263-268.doi: 10.1007/BF01212974.

    [3]

    V. Bergelson, B. Host and B. Kra, Multiple recurrence and nilsequences, (with an appendix by I. Ruzsa), Invent. Math., 160 (2005), 261-303.doi: 10.1007/s00222-004-0428-6.

    [4]

    V. Bergelson, T. Tao and T. Ziegler, An inverse theorem for uniformity seminorms associated with the action of $F_p^{\infty}$, Geom. Funct. Anal., 19 (2010), 1539-1596.doi: 10.1007/s00039-010-0051-1.

    [5]

    J.-P. Conze and E. Lesigne, Sur un théorème ergodique pour des mesures diagonales, (French) [On an ergodic theorem for diagonal measures], C. R. Acad. Sci. Paris Sér. I Math., 306 (1988), 491-493.

    [6]

    N. Frantzikinakis, B. Host and B. Kra, Multiple recurrence and convergence for sequences related to the prime numbers, J. Reine Angew. Math., 611 (2007), 131-144.doi: 10.1515/CRELLE.2007.076.

    [7]

    G. A. Freĭman, "Foundations of a Structural Theory of Set Addition," Translations of Mathematical Monographs, 37, AMS, Providence, RI, 1973.

    [8]

    H. Furstenberg, "Nonconventional Ergodic Averages," The legacy of John von Neumann (Hempstead, NY, 1988), 43-56, Proc. Sympos. Pure Math., 50, Amer. Math. Soc., Providence, RI, 1990.

    [9]

    H. Furstenberg and B. Weiss, "A mean ergodic theorem for $1/N\sum^N_{n=1}f (T^n x)g(T^ {n^ 2}x)$," Convergence in ergodic theory and probability (Columbus, OH, 1993), 193-227, Ohio State Univ. Math. Res. Inst. Publ., 5 de Gruyter, Berlin, 1996.

    [10]

    W. T. Gowers, A new proof of Szemerédi's theorem for progressions of length four, GAFA, 8 (1998), 529-551.doi: 10.1007/s000390050065.

    [11]

    -, A new proof of Szemerédi's theorem, GAFA, 11 (2001), 465-588.

    [12]

    B. Green, "Generalising the Hardy-Littlewood Method for Primes," International Congress of Mathematicians. Vol. II, 373-399, Eur. Math. Soc., Zürich, 2006.

    [13]

    B. Green and T. Tao, The primes contain arbitrarily long arithmetic progressions, Annals of Math. (2), 167 (2008), 481-547.doi: 10.4007/annals.2008.167.481.

    [14]

    -An inverse theorem for the Gowers $U^3$-norm, with applications, Proc. Edinburgh Math. Soc., 51, 71-153.

    [15]

    -, Linear equations in primes, Ann. Math. (2), 171 (2010), 1753-1850.

    [16]

    -The quantitative behaviour of polynomial orbits on nilmanifolds, to appear in Ann. Math.

    [17]

    -The Möbius function is strongly orthogonal to nilsequences, to appear in Ann. Math.

    [18]

    -An arithmetic regularity lemma, associated counting lemma, and applications, in "An Irregular Mind" (Szemerédi is 70), Bolyai Society Mathematical Studies, 21, 261-334.

    [19]

    B. Green, T. Tao and T. Ziegler, An inverse theorem for the Gowers $U^4[N]$-norm, Glasgow Math. J., 53 (2011), 1-50.doi: 10.1017/S0017089510000546.

    [20]

    -An inverse theorem for the Gowers $U^{s+1}[N]$ norm, preprint, arXiv:1009.3998.

    [21]

    I. J. Håland, Uniform distribution of generalized polynomials, J. Number Theory, 45 (1993), 327-366.doi: 10.1006/jnth.1993.1082.

    [22]

    B. Host and B. Kra, Convergence of Conze-Lesigne averages, Erg. Th. Dyn. Sys., 21 (2001), 493-509.

    [23]

    -, Averaging along cubes, Modern Dynamical Systems and Applications, Cambridge University Press, Cambridge, (2004), 123-144.

    [24]

    -, Nonconventional ergodic averages and nilmanifolds, Ann. of Math. (2), 161 (2005), 397-488.

    [25]

    -, Uniformity seminorms on $l^\infty$ and applications, J. Anal. Math., 108 (2009), 219-276.doi: 10.1007/s11854-009-0024-1.

    [26]

    A. Leibman, Pointwise convergence of ergodic averages of polynomial sequences of translations on a nilmanifold, Ergodic Theory and Dynamical Systems, 25 (2005), 201-213.doi: 10.1017/S0143385704000215.

    [27]

    -A canonical form and the distribution of values of generalized polynomials, to appear in Israel Journal of Mathematics.

    [28]

    E. Lesigne, Équations fonctionnelles, couplages de produits gauches et théorèmes ergodiques pour mesures diagonales, (French) [Functional equations, couplings of skew products, ergodic theorems for diagonal measures], Bull. Soc. Math. France, 121 (1993), 315-351.

    [29]

    I. Z. Ruzsa, Generalized arithmetical progressions and sumsets, Acta Math. Hungar., 65 (1994), 379-388.doi: 10.1007/BF01876039.

    [30]

    A. Samorodnitsky, "Low-Degree Tests at Large Distances," STOC'07, Proceedings of the 39th Annual ACM Symposium on Theory of Computing, ACM, New York, (2007), 506-515.

    [31]

    B. SzegedyHigher order Fourier analysis as an algebraic theory I, preprint, arXiv::0903.0897.

    [32]

    -Higher order Fourier analysis as an algebraic theory II, preprint, arXiv::0911.1157.

    [33]

    -Higher order Fourier analysis as an algebraic theory III, preprint, arXiv::1001.4282.

    [34]

    T. Tao and T. Ziegler, The inverse conjecture for the Gowers norms over finite fields via the correspondence principle, Anal. PDE, 3 (2010), 1-20.doi: 10.2140/apde.2010.3.1.

    [35]

    T. Tao and V. Vu, "Additive Combinatorics," Cambridge Studies in Advanced Mathematics, 105, Cambridge University Press, Cambridge, 2006.

    [36]

    T. Ziegler, Universal characteristic factors and Furstenberg averages, J. Amer. Math. Soc., 20 (2007), 53-97.doi: 10.1090/S0894-0347-06-00532-7.

  • 加载中
Open Access Under a Creative Commons license
SHARE

Article Metrics

HTML views() PDF downloads(246) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return