Advanced Search
Article Contents
Article Contents

Deligne pairing and determinant bundle

Abstract Related Papers Cited by
  • Let $X \rightarrow\ S$ be a smooth projective surjective morphism, where $X$ and $S$ are integral schemes over $\mathbb C$. Let $L_0\, L_1\, \cdots \, L_{n-1}\, L_{n}$ be line bundles over $X$. There is a natural isomorphism of the Deligne pairing 〈$L_0\, \cdots\, L_{n}$〉with the determinant line bundle $Det(\otimes_{i=0}^{n} (L_i- \mathcal O_{X}))$.
    Mathematics Subject Classification: Primary: 14F05; Secondary: 14D06.


    \begin{equation} \\ \end{equation}
  • [1]

    J.-M. Bismut, H. Gillet and C. Soulé, Analytic torsion and holomorphic determinant bundles. I: Bott-Chern forms and analytic torsion, Commun. Math. Phys., 115 (1988), 49-78.doi: 10.1007/BF01238853.


    P. Deligne, "Le Déterminant de la Cohomologie," Current Trends in Arithmetical Algebraic Geometry, 93-177, Contemp. Math. 67, Amer. Math. Soc., Providence, RI, 1987.


    R. Elkik, Métriques sur les fibrés d'intersection, Duke Math. Jour., 61 (1990), 303-328.doi: 10.1215/S0012-7094-90-06113-7.


    J. Franke, Chow categories, Algebraic Geometry (Berlin, 1988), Compositio Math., 76 (1990), 101-162.


    C. Gasbarri, Heights and geometric invariant theory, Forum Math., 12 (2000), 135-153.doi: 10.1515/form.2000.001.


    A. Fujiki and G. Schumacher, The moduli space of extremal compact Kähler manifolds and generalized Weil-Petersson metrics, Publ. Res. Inst. Math. Sci., 26 (1990), 101-183.doi: 10.2977/prims/1195171664.


    F. Knudsen and D. Mumford, The projectivity of the moduli space of stable curves. I: Preliminaries on "det" and "Div," Math. Scand., 39 (1976), 19-55.


    S. Kobayashi, "Differential Geometry of Complex Vector Bundles," Publications of the Mathematical Society of Japan, 15, Kanô Memorial Lectures, 5, Princeton University Press, Princeton, NJ, Iwanami Shoten, Tokyo, 1987.


    T. Mabuchi and L. Weng, Kähler-Einstein metrics and Chow-Mumford stability, preprint, 1998.


    D. H. Phong and J. Sturm, Scalar curvature, moment maps, and the Deligne pairing, Amer. Jour. Math., 126 (2004), 693-712.doi: 10.1353/ajm.2004.0019.


    D. H. Phong, J. Ross and J. Sturm, Deligne pairings and the Knudsen-Mumford expansion, Jour. Diff. Geom., 78 (2008), 475-496.


    D. G. Quillen, Determinants of Cauchy-Riemann operators on Riemann surfaces, (Russian), Funktsional. Anal. i Prilozhen, 19 (1985), 37-41.


    S. Zhang, Heights and reductions of semi-stable varieties, Compos. Math., 104 (1996), 77-105.

  • 加载中

Article Metrics

HTML views() PDF downloads(322) Cited by(0)

Access History

Other Articles By Authors



    DownLoad:  Full-Size Img  PowerPoint