\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Deligne pairing and determinant bundle

Abstract Related Papers Cited by
  • Let $X \rightarrow\ S$ be a smooth projective surjective morphism, where $X$ and $S$ are integral schemes over $\mathbb C$. Let $L_0\, L_1\, \cdots \, L_{n-1}\, L_{n}$ be line bundles over $X$. There is a natural isomorphism of the Deligne pairing 〈$L_0\, \cdots\, L_{n}$〉with the determinant line bundle $Det(\otimes_{i=0}^{n} (L_i- \mathcal O_{X}))$.
    Mathematics Subject Classification: Primary: 14F05; Secondary: 14D06.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    J.-M. Bismut, H. Gillet and C. Soulé, Analytic torsion and holomorphic determinant bundles. I: Bott-Chern forms and analytic torsion, Commun. Math. Phys., 115 (1988), 49-78.doi: 10.1007/BF01238853.

    [2]

    P. Deligne, "Le Déterminant de la Cohomologie," Current Trends in Arithmetical Algebraic Geometry, 93-177, Contemp. Math. 67, Amer. Math. Soc., Providence, RI, 1987.

    [3]

    R. Elkik, Métriques sur les fibrés d'intersection, Duke Math. Jour., 61 (1990), 303-328.doi: 10.1215/S0012-7094-90-06113-7.

    [4]

    J. Franke, Chow categories, Algebraic Geometry (Berlin, 1988), Compositio Math., 76 (1990), 101-162.

    [5]

    C. Gasbarri, Heights and geometric invariant theory, Forum Math., 12 (2000), 135-153.doi: 10.1515/form.2000.001.

    [6]

    A. Fujiki and G. Schumacher, The moduli space of extremal compact Kähler manifolds and generalized Weil-Petersson metrics, Publ. Res. Inst. Math. Sci., 26 (1990), 101-183.doi: 10.2977/prims/1195171664.

    [7]

    F. Knudsen and D. Mumford, The projectivity of the moduli space of stable curves. I: Preliminaries on "det" and "Div," Math. Scand., 39 (1976), 19-55.

    [8]

    S. Kobayashi, "Differential Geometry of Complex Vector Bundles," Publications of the Mathematical Society of Japan, 15, Kanô Memorial Lectures, 5, Princeton University Press, Princeton, NJ, Iwanami Shoten, Tokyo, 1987.

    [9]

    T. Mabuchi and L. Weng, Kähler-Einstein metrics and Chow-Mumford stability, preprint, 1998.

    [10]

    D. H. Phong and J. Sturm, Scalar curvature, moment maps, and the Deligne pairing, Amer. Jour. Math., 126 (2004), 693-712.doi: 10.1353/ajm.2004.0019.

    [11]

    D. H. Phong, J. Ross and J. Sturm, Deligne pairings and the Knudsen-Mumford expansion, Jour. Diff. Geom., 78 (2008), 475-496.

    [12]

    D. G. Quillen, Determinants of Cauchy-Riemann operators on Riemann surfaces, (Russian), Funktsional. Anal. i Prilozhen, 19 (1985), 37-41.

    [13]

    S. Zhang, Heights and reductions of semi-stable varieties, Compos. Math., 104 (1996), 77-105.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(322) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return