\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Higher pentagram maps, weighted directed networks, and cluster dynamics

Abstract Related Papers Cited by
  • The pentagram map was extensively studied in a series of papers by V. Ovsienko, R. Schwartz and S. Tabachnikov. It was recently interpreted by M. Glick as a sequence of cluster transformations associated with a special quiver. Using compatible Poisson structures in cluster algebras and Poisson geometry of directed networks on surfaces, we generalize Glick's construction to include the pentagram map into a family of geometrically meaningful discrete integrable maps.
    Mathematics Subject Classification: Primary: 13F60; Secondary: 53D17.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    A. Bobenko and T. Hoffmann, Hexagonal circle patterns and integrable systems: Patterns with constant angles, Duke Math. J., 116 (2003), 525-566.doi: 10.1215/S0012-7094-03-11635-X.

    [2]

    A. Bobenko and Yu. Suris, "Discrete Differential Geometry. Integrable Structure," Amer. Math. Soc., Providence, RI, 2008.

    [3]

    H. Busemann and P. Kelly, "Projective geometry and projective metrics," Academic Press, New York, 1953.

    [4]

    B. Dubrovin, I. Krichever and S. Novikov, Integrable systems. I, in "Dynamical Systems," IV, Encyclopaedia Math. Sci., 4, Springer, Berlin, (2001), 177-332.

    [5]

    L. Faddeev and L. Takhtajan, "Hamiltonian Methods in the Theory of Solitons," Springer-Verlag, Berlin, 1987.

    [6]

    S. Fomin and A. Zelevinsky, Cluster algebras. IV. Coefficients, Compos. Math., 143 (2007), 112-164.doi: 10.1112/S0010437X06002521.

    [7]

    M. Gekhtman, M. Shapiro and A. Vainshtein, Poisson geometry of directed networks in a disk, Selecta Math., 15 (2009), 61-103.doi: 10.1007/s00029-009-0523-z.

    [8]

    M. Gekhtman, M. Shapiro and A. Vainshtein, "Cluster Algebras and Poisson Geometry," Amer. Math. Soc., Providence, RI, 2010.

    [9]

    M. Gekhtman, M. Shapiro and A. VainshteinPoisson geometry of directed networks in an annulus, J. Europ. Math. Soc., preprint, arXiv:0901.0020.

    [10]

    M. Gekhtman, M. Shapiro and A. Vainshtein, Generalized Bäcklund-Darboux transformations for Coxeter-Toda flows from a cluster algebra perspective, Acta Math., 206 (2011), 245-310.doi: 10.1007/s11511-011-0063-1.

    [11]

    M. Glick, The pentagram map and $Y$-patterns, Adv. Math., 227 (2011), 1019-1045.doi: 10.1016/j.aim.2011.02.018.

    [12]
    [13]

    A. Goncharov and R. KenyonDimers and cluster integrable systems, preprint, arXiv:1107.5588.

    [14]

    B. Khesin and F. SolovievIntegrability of a space pentagram map, in preparation.

    [15]

    B. Konopelchenko and W. Schief, Menelaus' theorem, Clifford configurations and inversive geometry of the Schwarzian KP hierarchy, J. Phys. A, 35 (2002), 6125-6144.doi: 10.1088/0305-4470/35/29/313.

    [16]

    G. Mari BeffaOn generalizations of the pentagram map: Discretizations of AGD flows, preprint, arXiv:1103.5047.

    [17]

    S. Morier-Genoud, V. Ovsienko and S. Tabachnikov2-frieze patterns and the cluster structure of the space of polygons, Ann. Inst. Fourier, preprint, arXiv:1008.3359.

    [18]

    F. Nijhoff and H. Capel, The discrete Korteweg-de Vries equation, Acta Appl. Math., 39 (1995), 133-158.doi: 10.1007/BF00994631.

    [19]

    M. Olshanetsky, A. Perelomov, A. Reyman and M. Semenov-Tian-Shansky, Integrable systems. II, in "Dynamical systems," VII, Encycl. Math. Sci., 16, Springer, Berlin, (1994), 83-259.

    [20]

    V. Ovsienko, R. Schwartz and S. Tabachnikov, Quasiperiodic motion for the Pentagram map, Electron. Res. Announc. Math. Sci., 16 (2009), 1-8.

    [21]

    V. Ovsienko, R. Schwartz and S. Tabachnikov, The Pentagram map: A discrete integrable system, Commun. Math. Phys., 299 (2010), 409-446.doi: 10.1007/s00220-010-1075-y.

    [22]

    V. Ovsienko, R. Schwartz and S. TabachnikovLiouville-Arnold integrability of the pentagram map on closed polygons, preprint, arXiv:1107.3633.

    [23]

    A. PostnikovTotal positivity, Grassmannians, and networks, preprint, arXiv:math.CO/0609764.

    [24]

    O. Schramm, Circle patterns with the combinatorics of the square grid, Duke Math. J., 86 (1997), 347-389.doi: 10.1215/S0012-7094-97-08611-7.

    [25]

    R. Schwartz, The pentagram map, Experiment. Math., 1 (1992), 71-81.

    [26]

    R. Schwartz, The pentagram map is recurrent, Experiment. Math., 10 (2001), 519-528.

    [27]

    R. Schwartz, Discrete monodromy, pentagrams, and the method of condensation, J. Fixed Point Theory Appl., 3 (2008), 379-409.doi: 10.1007/s11784-008-0079-0.

    [28]

    R. Schwartz and S. Tabachnikov, Elementary surprises in projective geometry, Math. Intelligencer, 32 (2010), 31-34.doi: 10.1007/s00283-010-9137-8.

    [29]

    R. Schwartz and S. Tabachnikov, The pentagram integrals on inscribed polygons, Electron. J. Comb., 18 (2011), 171.

    [30]

    F. SolovievIntegrability of the pentagram map, preprint, arXiv:1106.3950.

    [31]

    Yu. Suris, On some integrable systems related to the Toda lattice, J. Phys. A, 30 (1997), 2235-2249.doi: 10.1088/0305-4470/30/6/041.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(142) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return