Advanced Search
Article Contents
Article Contents

Higher pentagram maps, weighted directed networks, and cluster dynamics

Abstract Related Papers Cited by
  • The pentagram map was extensively studied in a series of papers by V. Ovsienko, R. Schwartz and S. Tabachnikov. It was recently interpreted by M. Glick as a sequence of cluster transformations associated with a special quiver. Using compatible Poisson structures in cluster algebras and Poisson geometry of directed networks on surfaces, we generalize Glick's construction to include the pentagram map into a family of geometrically meaningful discrete integrable maps.
    Mathematics Subject Classification: Primary: 13F60; Secondary: 53D17.


    \begin{equation} \\ \end{equation}
  • [1]

    A. Bobenko and T. Hoffmann, Hexagonal circle patterns and integrable systems: Patterns with constant angles, Duke Math. J., 116 (2003), 525-566.doi: 10.1215/S0012-7094-03-11635-X.


    A. Bobenko and Yu. Suris, "Discrete Differential Geometry. Integrable Structure," Amer. Math. Soc., Providence, RI, 2008.


    H. Busemann and P. Kelly, "Projective geometry and projective metrics," Academic Press, New York, 1953.


    B. Dubrovin, I. Krichever and S. Novikov, Integrable systems. I, in "Dynamical Systems," IV, Encyclopaedia Math. Sci., 4, Springer, Berlin, (2001), 177-332.


    L. Faddeev and L. Takhtajan, "Hamiltonian Methods in the Theory of Solitons," Springer-Verlag, Berlin, 1987.


    S. Fomin and A. Zelevinsky, Cluster algebras. IV. Coefficients, Compos. Math., 143 (2007), 112-164.doi: 10.1112/S0010437X06002521.


    M. Gekhtman, M. Shapiro and A. Vainshtein, Poisson geometry of directed networks in a disk, Selecta Math., 15 (2009), 61-103.doi: 10.1007/s00029-009-0523-z.


    M. Gekhtman, M. Shapiro and A. Vainshtein, "Cluster Algebras and Poisson Geometry," Amer. Math. Soc., Providence, RI, 2010.


    M. Gekhtman, M. Shapiro and A. VainshteinPoisson geometry of directed networks in an annulus, J. Europ. Math. Soc., preprint, arXiv:0901.0020.


    M. Gekhtman, M. Shapiro and A. Vainshtein, Generalized Bäcklund-Darboux transformations for Coxeter-Toda flows from a cluster algebra perspective, Acta Math., 206 (2011), 245-310.doi: 10.1007/s11511-011-0063-1.


    M. Glick, The pentagram map and $Y$-patterns, Adv. Math., 227 (2011), 1019-1045.doi: 10.1016/j.aim.2011.02.018.


    A. Goncharov and R. KenyonDimers and cluster integrable systems, preprint, arXiv:1107.5588.


    B. Khesin and F. SolovievIntegrability of a space pentagram map, in preparation.


    B. Konopelchenko and W. Schief, Menelaus' theorem, Clifford configurations and inversive geometry of the Schwarzian KP hierarchy, J. Phys. A, 35 (2002), 6125-6144.doi: 10.1088/0305-4470/35/29/313.


    G. Mari BeffaOn generalizations of the pentagram map: Discretizations of AGD flows, preprint, arXiv:1103.5047.


    S. Morier-Genoud, V. Ovsienko and S. Tabachnikov2-frieze patterns and the cluster structure of the space of polygons, Ann. Inst. Fourier, preprint, arXiv:1008.3359.


    F. Nijhoff and H. Capel, The discrete Korteweg-de Vries equation, Acta Appl. Math., 39 (1995), 133-158.doi: 10.1007/BF00994631.


    M. Olshanetsky, A. Perelomov, A. Reyman and M. Semenov-Tian-Shansky, Integrable systems. II, in "Dynamical systems," VII, Encycl. Math. Sci., 16, Springer, Berlin, (1994), 83-259.


    V. Ovsienko, R. Schwartz and S. Tabachnikov, Quasiperiodic motion for the Pentagram map, Electron. Res. Announc. Math. Sci., 16 (2009), 1-8.


    V. Ovsienko, R. Schwartz and S. Tabachnikov, The Pentagram map: A discrete integrable system, Commun. Math. Phys., 299 (2010), 409-446.doi: 10.1007/s00220-010-1075-y.


    V. Ovsienko, R. Schwartz and S. TabachnikovLiouville-Arnold integrability of the pentagram map on closed polygons, preprint, arXiv:1107.3633.


    A. PostnikovTotal positivity, Grassmannians, and networks, preprint, arXiv:math.CO/0609764.


    O. Schramm, Circle patterns with the combinatorics of the square grid, Duke Math. J., 86 (1997), 347-389.doi: 10.1215/S0012-7094-97-08611-7.


    R. Schwartz, The pentagram map, Experiment. Math., 1 (1992), 71-81.


    R. Schwartz, The pentagram map is recurrent, Experiment. Math., 10 (2001), 519-528.


    R. Schwartz, Discrete monodromy, pentagrams, and the method of condensation, J. Fixed Point Theory Appl., 3 (2008), 379-409.doi: 10.1007/s11784-008-0079-0.


    R. Schwartz and S. Tabachnikov, Elementary surprises in projective geometry, Math. Intelligencer, 32 (2010), 31-34.doi: 10.1007/s00283-010-9137-8.


    R. Schwartz and S. Tabachnikov, The pentagram integrals on inscribed polygons, Electron. J. Comb., 18 (2011), 171.


    F. SolovievIntegrability of the pentagram map, preprint, arXiv:1106.3950.


    Yu. Suris, On some integrable systems related to the Toda lattice, J. Phys. A, 30 (1997), 2235-2249.doi: 10.1088/0305-4470/30/6/041.

  • 加载中

Article Metrics

HTML views() PDF downloads(142) Cited by(0)

Access History



    DownLoad:  Full-Size Img  PowerPoint