\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Locally decodable codes and the failure of cotype for projective tensor products

Abstract Related Papers Cited by
  • It is shown that for every $p\in (1,\infty)$ there exists a Banach space $X$ of finite cotype such that the projective tensor product $l_p\hat\otimes X$ fails to have finite cotype. More generally, if $p_1,p_2,p_3\in (1,\infty)$ satisfy $\frac{1}{p_1}+\frac{1}{p_2}+\frac{1}{p_3}\le 1$ then $l_{p_1}\hat\otimes l_{p_2} \hat\otimes l_{p_3}$ does not have finite cotype. This is proved via a connection to the theory of locally decodable codes.
    Mathematics Subject Classification: Primary: 46B07; Secondary: 46B28.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    F. Albiac and N. J. Kalton, "Topics in Banach space theory," 233 of Graduate Texts in Mathematics, Springer, New York, 2006.

    [2]

    A. Arias and J. D. Farmer, On the structure of tensor products of $l_p$-spaces, Pacific J. Math., 175 (1996), 13-37.

    [3]

    A. Beimel, Y. Ishai, E. Kushilevitz and I. Orlov, Share conversion and private information retrieval, in "Proc. 27th IEEE Conf. on Computational Complexity (CCC'12)" (2012), 258-268.

    [4]

    A. Ben-Aroya, O. Regev and R. de Wolf, A hypercontractive inequality for matrix-valued functions with applications to quantum computing and LDCs, in "49th Annual IEEE Symposium on Foundations of Computer Science" (2008), 477-486. Available at http://arxiv.org/abs/0705.3806.

    [5]

    J. Bourgain, New Banach space properties of the disc algebra and $H^{\infty}$, Acta Math., 152 (1984), 1-48.

    [6]

    J. Bourgain, On martingales transforms in finite-dimensional lattices with an appendix on the $K$-convexity constant, Math. Nachr., 119 (1984), 41-53.doi: 10.1002/mana.19841190104.

    [7]

    J. Bourgain and G. Pisier, A construction of $\mathcal L_{\infty }$-spaces and related Banach spaces, Bol. Soc. Brasil. Mat., 14 (1983), 109-123.

    [8]

    Q. Bu, Observations about the projective tensor product of Banach spaces. II. $L^p(0,1)\hat\otimes X,\ 1, Quaest. Math., 25 (2002), 209-227.doi: 10.2989/16073600209486010.

    [9]

    Q. Bu and J. Diestel, Observations about the projective tensor product of Banach spaces. I. $l^p\hat\otimesX,\ 1, Quaest. Math., 24 (2001), 519-533.doi: 10.1080/16073606.2001.9639238.

    [10]

    Q. Bu and P. N. Dowling, Observations about the projective tensor product of Banach spaces. III. $L^p[0,1]\hat\otimes X,\ 1, Quaest. Math., 25 (2002), 303-310.doi: 10.2989/16073600209486017.

    [11]

    J. Diestel, J. Fourie and J. Swart, The projective tensor product. I, in "Trends in Banach Spaces and Operator Theory (Memphis, TN, 2001)" 321 of Contemp. Math., 37-65. Amer. Math. Soc., Providence, RI, (2003).

    [12]

    J. Diestel, J. H. Fourie and J. Swart, "The Metric Theory of Tensor Products," American Mathematical Society, Providence, RI, 2008. Grothendieck's résumé revisited.

    [13]

    K. Efremenko, 3-query locally decodable codes of subexponential length, in "STOC'09-Proceedings of the 2009 ACM International Symposium on Theory of Computing" 39-44. ACM, New York, (2009).

    [14]

    V. Grolmusz, Superpolynomial size set-systems with restricted intersections mod 6 and explicit Ramsey graphs, Combinatorica, 20 (2000), 71-85.doi: 10.1007/s004930070032.

    [15]

    A. Grothendieck, Résumé de la théorie métrique des produits tensoriels topologiques, Bol. Soc. Mat. São Paulo, 8 (1953), 1-79.

    [16]

    J. Katz and L. Trevisan, On the efficiency of local decoding procedures for error-correcting codes, in "Proceedings of the Thirty-Second Annual ACM Symposium on Theory of Computing" 80-86 (electronic), New York, (2000). ACM.

    [17]

    I. Kerenidis and R. de Wolf, Exponential lower bound for 2-query locally decodable codes via a quantum argument, J. Comput. System Sci., 69 (2004), 395-420.doi: 10.1016/j.jcss.2004.04.007.

    [18]

    D. R. Lewis, Duals of tensor products, in "Banach spaces of analytic functions (Proc. Pelczynski Conf., Kent State Univ., Kent, Ohio, 1976" 57-66. Lecture Notes in Math., 604. Springer, Berlin, (1977).

    [19]

    B. Maurey and G. Pisier, Séries de variables aléatoires vectorielles indépendantes et propriétés géométriques des espaces de Banach, Studia Math., 58 (1976), 45-90.

    [20]

    G. Pisier, Un théorème sur les opérateurs linéaires entre espaces de Banach qui se factorisent par un espace de Hilbert, Ann. Sci., École Norm. Sup. (4), 13 (1980), 23-43.

    [21]

    G. Pisier, Counterexamples to a conjecture of Grothendieck, Acta. Math., 151 (1983), 181-208.

    [22]

    G. Pisier, Factorization of operator valued analytic functions, Adv. Math., 93 (1992), 61-125.

    [23]

    G. Pisier, Random series of trace class operators, in "Proceedings Cuarto CLAPEM Mexico 1990. Contribuciones en probabilidad y estadistica matematica" (1992), 29-42. Available at http://arxiv.org/abs/1103.2090.

    [24]

    R. A. Ryan, "Introduction to Tensor Products of Banach Spaces," Springer Monographs in Mathematics. Springer-Verlag London Ltd., London, 2002.\MRSHORT{1888309}

    [25]

    N. Tomczak-Jaegermann, The moduli of smoothness and convexity and the Rademacher averages of trace classes $S_p(1\leq p<\infty )$, Studia Math., 50 (1974), 163-182.

    [26]

    L. Trevisan, Some applications of coding theory in computational complexity, in "Complexity of Computations and Proofs" 13 of Quad. Mat., 347-424. Dept. Math., Seconda Univ. Napoli, Caserta, (2004).

    [27]

    D. P. Woodruff, New lower bounds for general locally decodable codes, Electronic Colloquium on Computational Complexity (ECCC), 14 (2007), 006.

    [28]

    S. Yekhanin, Towards 3-query locally decodable codes of subexponential length, J. ACM, 55 (2008), pp16.

    [29]

    S. Yekhanin, Locally decodable codes, Found. Trends Theor. Comput. Sci., 7 (2011), 1-117.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(75) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return