-
Previous Article
The pentagram map in higher dimensions and KdV flows
- ERA-MS Home
- This Volume
-
Next Article
Integration of exact Courant algebroids
Upper bounds for Steklov eigenvalues on surfaces
1. | Laboratoire de Mathématiques (LAMA), Université de Savoie campus scientifique, 73376 Le Bourget-du-Lac, France |
2. | Département de Mathématiques et de Statistique, Université de Montréal, C. P. 6128, Succ. Centre-ville, Montréal, Québec, H3C 3J7, Canada |
References:
[1] |
Lars L. Ahlfors, Open Riemann surfaces and extremal problems on compact subregions, Comment. Math. Helv., 24 (1950), 100-134.
doi: 10.1007/BF02567028. |
[2] |
Catherine Bandle, "Isoperimetric Inequalities and Applications," Monographs and Studies in Mathematics, 7, Pitman, Boston, Mass., 1980. |
[3] |
Friedemann Brock, An isoperimetric inequality for eigenvalues of the Stekloff problem, Z. Angew. Math. Mech., 81 (2001), 69-71.
doi: 10.1002/1521-4001(200101)81:1<69::AID-ZAMM69>3.0.CO;2-#. |
[4] |
Robert Brooks and Eran Makover, Riemann surfaces with large first eigenvalue, J. Anal. Math., 83 (2001), 243-258.
doi: 10.1007/BF02790263. |
[5] |
Peter Buser, On the bipartition of graphs, Discrete Appl. Math., 9 (1984), 105-109. |
[6] |
Alberto P. Calderón, On an inverse boundary value problem, in "Seminar on Numerical Analysis and its Applications to Continuum Physics" (Rio de Janeiro), Soc. Brasil. Mat., Rio de Janeiro, 1980. |
[7] |
Bruno Colbois, Ahmad El Soufi and Alexandre Girouard, Isoperimetric control of the Steklov spectrum, J. Funct. Anal., 261 (2011), 1384-1399.
doi: 10.1016/j.jfa.2011.05.006. |
[8] |
Ahmad El Soufi and Saïd Ilias, Le volume conforme et ses applications d'après Li et Yau, in "Séminaire de Théorie Spectrale et Géométrie, Année 1983-1984," VII.1-VII.15, Univ. Grenoble I, Saint-Martin-d'Héres, 1984. |
[9] |
José F. Escobar, An isoperimetric inequality and the first Steklov eigenvalue, J. Funct. Anal., 165 (1999), 101-116.
doi: 10.1006/jfan.1999.3402. |
[10] |
Ailana Fraser and Richard Schoen, The first Steklov eigenvalue, conformal geometry, and minimal surfaces, Adv. Math., 226 (2011), 4011-4030.
doi: 10.1016/j.aim.2010.11.007. |
[11] |
Alexandre Gabard, Sur la représentation conforme des surfaces de Riemann à bord et une caractérisation des courbes séparantes, Comment. Math. Helv., 81 (2006), 945-964.
doi: 10.4171/CMH/82. |
[12] |
Alexandre Girouard and Iosif Polterovich, On the Hersch-Payne-Schiffer estimates for the eigenvalues of the Steklov problem, Funktsional. Anal. i Prilozhen., 44 (2010), 33-47. |
[13] |
Alexander Grigor'yan, Yuri Netrusov and Shing-Tung Yau, Eigenvalues of elliptic operators and geometric applications, in "Surveys in Differential Geometry," Vol. IX, Surv. Differ. Geom., Int. Press, Somerville, MA, 2004. |
[14] |
Asma Hassannezhad, Conformal upper bounds for the eigenvalues of the Laplacian and Steklov problem, Journal of Functional Analysis, 261 (2011), 3419-3436.
doi: 10.1016/j.jfa.2011.08.003. |
[15] |
Antoine Henrot, Gérard A. Philippin and Abdessamad Safoui, Some isoperimetric inequalities with application to the Stekloff problem, J. Convex Anal., 15 (2008), 581-592. |
[16] |
Joseph Hersch, Lawrence E. Payne and Menahem M. Schiffer, Some inequalities for Stekloff eigenvalues, Arch. Rational Mech. Anal., 57 (1975), 99-114. |
[17] |
Gerasim Kokarev, Variational aspects of Laplace eigenvalues on Riemannian surfaces, preprint, arXiv:1103.2448, 2011. |
[18] |
Nicholas Korevaar, Upper bounds for eigenvalues of conformal metrics, J. Differential Geom., 37 (1993), 73-93. |
[19] |
Matti Lassas, Michael Taylor and Gunther Uhlmann, The Dirichlet-to-Neumann map for complete Riemannian manifolds with boundary, Comm. Anal. Geom., 11 (2003), 207-221. |
[20] |
Michael E. Taylor, "Partial Differential Equations. II," Applied Mathematical Sciences, 116, Springer-Verlag, New York, 1996. |
[21] |
Robert Weinstock, Inequalities for a classical eigenvalue problem, J. Rational Mech. Anal., 3 (1954), 745-753. |
[22] |
Lewis Wheeler and Cornelius O. Horgan, Isoperimetric bounds on the lowest nonzero Stekloff eigenvalue for plane strip domains, SIAM J. Appl. Math., 31 (1976), 385-391.
doi: 10.1137/0131032. |
[23] |
Paul C. Yang and Shing-Tung Yau, Eigenvalues of the Laplacian of compact Riemann surfaces and minimal submanifolds, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 7 (1980), 55-63. |
show all references
References:
[1] |
Lars L. Ahlfors, Open Riemann surfaces and extremal problems on compact subregions, Comment. Math. Helv., 24 (1950), 100-134.
doi: 10.1007/BF02567028. |
[2] |
Catherine Bandle, "Isoperimetric Inequalities and Applications," Monographs and Studies in Mathematics, 7, Pitman, Boston, Mass., 1980. |
[3] |
Friedemann Brock, An isoperimetric inequality for eigenvalues of the Stekloff problem, Z. Angew. Math. Mech., 81 (2001), 69-71.
doi: 10.1002/1521-4001(200101)81:1<69::AID-ZAMM69>3.0.CO;2-#. |
[4] |
Robert Brooks and Eran Makover, Riemann surfaces with large first eigenvalue, J. Anal. Math., 83 (2001), 243-258.
doi: 10.1007/BF02790263. |
[5] |
Peter Buser, On the bipartition of graphs, Discrete Appl. Math., 9 (1984), 105-109. |
[6] |
Alberto P. Calderón, On an inverse boundary value problem, in "Seminar on Numerical Analysis and its Applications to Continuum Physics" (Rio de Janeiro), Soc. Brasil. Mat., Rio de Janeiro, 1980. |
[7] |
Bruno Colbois, Ahmad El Soufi and Alexandre Girouard, Isoperimetric control of the Steklov spectrum, J. Funct. Anal., 261 (2011), 1384-1399.
doi: 10.1016/j.jfa.2011.05.006. |
[8] |
Ahmad El Soufi and Saïd Ilias, Le volume conforme et ses applications d'après Li et Yau, in "Séminaire de Théorie Spectrale et Géométrie, Année 1983-1984," VII.1-VII.15, Univ. Grenoble I, Saint-Martin-d'Héres, 1984. |
[9] |
José F. Escobar, An isoperimetric inequality and the first Steklov eigenvalue, J. Funct. Anal., 165 (1999), 101-116.
doi: 10.1006/jfan.1999.3402. |
[10] |
Ailana Fraser and Richard Schoen, The first Steklov eigenvalue, conformal geometry, and minimal surfaces, Adv. Math., 226 (2011), 4011-4030.
doi: 10.1016/j.aim.2010.11.007. |
[11] |
Alexandre Gabard, Sur la représentation conforme des surfaces de Riemann à bord et une caractérisation des courbes séparantes, Comment. Math. Helv., 81 (2006), 945-964.
doi: 10.4171/CMH/82. |
[12] |
Alexandre Girouard and Iosif Polterovich, On the Hersch-Payne-Schiffer estimates for the eigenvalues of the Steklov problem, Funktsional. Anal. i Prilozhen., 44 (2010), 33-47. |
[13] |
Alexander Grigor'yan, Yuri Netrusov and Shing-Tung Yau, Eigenvalues of elliptic operators and geometric applications, in "Surveys in Differential Geometry," Vol. IX, Surv. Differ. Geom., Int. Press, Somerville, MA, 2004. |
[14] |
Asma Hassannezhad, Conformal upper bounds for the eigenvalues of the Laplacian and Steklov problem, Journal of Functional Analysis, 261 (2011), 3419-3436.
doi: 10.1016/j.jfa.2011.08.003. |
[15] |
Antoine Henrot, Gérard A. Philippin and Abdessamad Safoui, Some isoperimetric inequalities with application to the Stekloff problem, J. Convex Anal., 15 (2008), 581-592. |
[16] |
Joseph Hersch, Lawrence E. Payne and Menahem M. Schiffer, Some inequalities for Stekloff eigenvalues, Arch. Rational Mech. Anal., 57 (1975), 99-114. |
[17] |
Gerasim Kokarev, Variational aspects of Laplace eigenvalues on Riemannian surfaces, preprint, arXiv:1103.2448, 2011. |
[18] |
Nicholas Korevaar, Upper bounds for eigenvalues of conformal metrics, J. Differential Geom., 37 (1993), 73-93. |
[19] |
Matti Lassas, Michael Taylor and Gunther Uhlmann, The Dirichlet-to-Neumann map for complete Riemannian manifolds with boundary, Comm. Anal. Geom., 11 (2003), 207-221. |
[20] |
Michael E. Taylor, "Partial Differential Equations. II," Applied Mathematical Sciences, 116, Springer-Verlag, New York, 1996. |
[21] |
Robert Weinstock, Inequalities for a classical eigenvalue problem, J. Rational Mech. Anal., 3 (1954), 745-753. |
[22] |
Lewis Wheeler and Cornelius O. Horgan, Isoperimetric bounds on the lowest nonzero Stekloff eigenvalue for plane strip domains, SIAM J. Appl. Math., 31 (1976), 385-391.
doi: 10.1137/0131032. |
[23] |
Paul C. Yang and Shing-Tung Yau, Eigenvalues of the Laplacian of compact Riemann surfaces and minimal submanifolds, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 7 (1980), 55-63. |
[1] |
Gloria Paoli, Gianpaolo Piscitelli, Rossanno Sannipoli. A stability result for the Steklov Laplacian Eigenvalue Problem with a spherical obstacle. Communications on Pure and Applied Analysis, 2021, 20 (1) : 145-158. doi: 10.3934/cpaa.2020261 |
[2] |
Monika Laskawy. Optimality conditions of the first eigenvalue of a fourth order Steklov problem. Communications on Pure and Applied Analysis, 2017, 16 (5) : 1843-1859. doi: 10.3934/cpaa.2017089 |
[3] |
Lujuan Yu. The asymptotic behaviour of the $ p(x) $-Laplacian Steklov eigenvalue problem. Discrete and Continuous Dynamical Systems - B, 2020, 25 (7) : 2621-2637. doi: 10.3934/dcdsb.2020025 |
[4] |
Eugenia Pérez. On periodic Steklov type eigenvalue problems on half-bands and the spectral homogenization problem. Discrete and Continuous Dynamical Systems - B, 2007, 7 (4) : 859-883. doi: 10.3934/dcdsb.2007.7.859 |
[5] |
Robert Brooks and Eran Makover. The first eigenvalue of a Riemann surface. Electronic Research Announcements, 1999, 5: 76-81. |
[6] |
Germain Gendron. Uniqueness results in the inverse spectral Steklov problem. Inverse Problems and Imaging, 2020, 14 (4) : 631-664. doi: 10.3934/ipi.2020029 |
[7] |
Vincenzo Ferone, Carlo Nitsch, Cristina Trombetti. On a conjectured reverse Faber-Krahn inequality for a Steklov--type Laplacian eigenvalue. Communications on Pure and Applied Analysis, 2015, 14 (1) : 63-82. doi: 10.3934/cpaa.2015.14.63 |
[8] |
Jiantao Jiang, Jing An, Jianwei Zhou. A novel numerical method based on a high order polynomial approximation of the fourth order Steklov equation and its eigenvalue problems. Discrete and Continuous Dynamical Systems - B, 2022 doi: 10.3934/dcdsb.2022066 |
[9] |
Erwann Delay, Pieralberto Sicbaldi. Extremal domains for the first eigenvalue in a general compact Riemannian manifold. Discrete and Continuous Dynamical Systems, 2015, 35 (12) : 5799-5825. doi: 10.3934/dcds.2015.35.5799 |
[10] |
Yuhua Sun. On the uniqueness of nonnegative solutions of differential inequalities with gradient terms on Riemannian manifolds. Communications on Pure and Applied Analysis, 2015, 14 (5) : 1743-1757. doi: 10.3934/cpaa.2015.14.1743 |
[11] |
Mohamed Jleli, Bessem Samet. Nonexistence for time-fractional wave inequalities on Riemannian manifolds. Discrete and Continuous Dynamical Systems - S, 2022 doi: 10.3934/dcdss.2022115 |
[12] |
Jun He, Guangjun Xu, Yanmin Liu. Some inequalities for the minimum M-eigenvalue of elasticity M-tensors. Journal of Industrial and Management Optimization, 2020, 16 (6) : 3035-3045. doi: 10.3934/jimo.2019092 |
[13] |
Wolfgang Arendt, Rafe Mazzeo. Friedlander's eigenvalue inequalities and the Dirichlet-to-Neumann semigroup. Communications on Pure and Applied Analysis, 2012, 11 (6) : 2201-2212. doi: 10.3934/cpaa.2012.11.2201 |
[14] |
Mihai Mihăilescu. An eigenvalue problem possessing a continuous family of eigenvalues plus an isolated eigenvalue. Communications on Pure and Applied Analysis, 2011, 10 (2) : 701-708. doi: 10.3934/cpaa.2011.10.701 |
[15] |
Yansheng Zhong, Yongqing Li. On a p-Laplacian eigenvalue problem with supercritical exponent. Communications on Pure and Applied Analysis, 2019, 18 (1) : 227-236. doi: 10.3934/cpaa.2019012 |
[16] |
Giacomo Bocerani, Dimitri Mugnai. A fractional eigenvalue problem in $\mathbb{R}^N$. Discrete and Continuous Dynamical Systems - S, 2016, 9 (3) : 619-629. doi: 10.3934/dcdss.2016016 |
[17] |
David Colton, Yuk-J. Leung. On a transmission eigenvalue problem for a spherically stratified coated dielectric. Inverse Problems and Imaging, 2016, 10 (2) : 369-378. doi: 10.3934/ipi.2016004 |
[18] |
Huan Gao, Zhibao Li, Haibin Zhang. A fast continuous method for the extreme eigenvalue problem. Journal of Industrial and Management Optimization, 2017, 13 (3) : 1587-1599. doi: 10.3934/jimo.2017008 |
[19] |
Giuseppina Barletta, Roberto Livrea, Nikolaos S. Papageorgiou. A nonlinear eigenvalue problem for the periodic scalar $p$-Laplacian. Communications on Pure and Applied Analysis, 2014, 13 (3) : 1075-1086. doi: 10.3934/cpaa.2014.13.1075 |
[20] |
Isabeau Birindelli, Stefania Patrizi. A Neumann eigenvalue problem for fully nonlinear operators. Discrete and Continuous Dynamical Systems, 2010, 28 (2) : 845-863. doi: 10.3934/dcds.2010.28.845 |
2020 Impact Factor: 0.929
Tools
Metrics
Other articles
by authors
[Back to Top]