\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Simple loops on 2-bridge spheres in Heckoid orbifolds for 2-bridge links

Abstract Related Papers Cited by
  • Following Riley's work, for each $2$-bridge link $K(r)$ of slope $r∈\mathbb{R}$ and an integer or a half-integer $n$ greater than $1$, we introduce the Heckoid orbifold $S(r;n)$and the Heckoid group $G(r;n)=\pi_1(S(r;n))$ of index $n$ for $K(r)$. When $n$ is an integer, $S(r;n)$ is called an even Heckoid orbifold; in this case, the underlying space is the exterior of $K(r)$, and the singular set is the lower tunnel of $K(r)$ with index $n$. The main purpose of this note is to announce answers to the following questions for even Heckoid orbifolds. (1) For an essential simple loop on a $4$-punctured sphere $S$ in $S(r;n)$ determined by the $2$-bridge sphere of $K(r)$, when is it null-homotopic in $S(r;n)$? (2) For two distinct essential simple loops on $S$, when are they homotopic in $S(r;n)$? We also announce applications of these results to character varieties, McShane's identity, and epimorphisms from $2$-bridge link groups onto Heckoid groups.
    Mathematics Subject Classification: Primary: 57M25; Secondary: 20F06.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    C. Adams, Hyperbolic 3-manifolds with two generators, Comm. Anal. Geom., 4 (1996), 181-206.

    [2]

    I. Agol, The classification of non-free $2$-parabolic generator Kleinian groups, Slides of talks given at Austin AMS Meeting and Budapest Bolyai conference, July 2002, Budapest, Hungary.

    [3]

    H. Akiyoshi, H. Miyachi and M. Sakuma, A refinement of McShane's identity for quasifuchsian punctured torus groups, In the Tradition of Ahlfors and Bers, III, Contemporary Math., 355 (2004), 21-40.

    [4]

    H. Akiyoshi, H. Miyachi and M. Sakuma, Variations of McShane's identity for punctured surface groups, Proceedings of the Workshop "Spaces of Kleinian groups and hyperbolic 3-manifolds'', London Math. Soc., Lecture Note Series, 329 (2006), 151-185.

    [5]

    H. Akiyoahi, M. Sakuma, M. Wada and Y. Yamashita, Punctured torus groups and $2$-bridge knot groups (I), Lecture Notes in Mathematics, 1909, Springer, Berlin, 2007.

    [6]

    M. Boileau and J. Porti, Geometrization of 3-orbifolds of cyclic type, Appendix A by Michael Heusener and Porti, Astérisque No. 272 (2001).

    [7]

    M. Boileau and B. Zimmermann, The $\pi$-orbifold group of a link, Math. Z., 200 (1989), 187-208.

    [8]

    B. H. Bowditch, A proof of McShane's identity via Markoff triples, Bull. London Math. Soc., 28 (1996), 73-78.

    [9]

    B. H. Bowditch, Markoff triples and quasifuchsian groups, Proc. London Math. Soc., 77 (1998), 697-736.

    [10]

    B. H. Bowditch, A variation of McShane's identity for once-punctured torus bundles, Topology, 36 (1997), 325-334.

    [11]

    D. Cooper, C. D. Hodgson and S. P. Kerckhoff, Three-dimensional orbifolds and cone-manifolds, MSJ Memoirs, 5, Mathematical Society of Japan, Tokyo, 2000.

    [12]

    C. Gordon, Problems, Workshop on Heegaard Splittings, 401-411, Geom. Topol. Monogr., 12, Geom. Topol. Publ., Coventry, 2007.

    [13]

    E. Hecke, Über die Bestimung Dirichletscher Reihen durch ihre Funktionalgleichung, Math. Ann., 112 (1936), 664-699.

    [14]

    K. N. Jones and A. W. Reid, Minimal index torsion-free subgroups of Kleinian groups, Math. Ann., 310 (1998), 235-250.

    [15]

    M. Kapovich, Hyperbolic manifolds and discrete groups, Progress in Mathematics, 183, Birkhäuser Boston, Inc., Boston, MA, 2001.

    [16]

    L. Keen and C. Series, The Riley slice of Schottky space, Proc. London Math. Soc., 69 (1994), 72-90.

    [17]

    Y. Komori and C. Series, The Riley slice revised, in "Epstein Birthday Shrift" (eds. I. Rivin, C. Rourke and C. Series), Geom. Topol. Monogr., 1 (1999), 303-316.

    [18]

    D. Lee and M. Sakuma, Simple loops on $2$-bridge spheres in $2$-bridge link complements, Electron. Res. Announc. Math. Sci., 18 (2011), 97-111.

    [19]

    D. Lee and M. Sakuma, Epimorphisms between $2$-bridge link groups: Homotopically trivial simple loops on $2$-bridge spheres, Proc. London Math. Soc., 104 (2012), 359-386.doi: 10.1112/plms/pdr036.

    [20]

    D. Lee and M. SakumaHomotopically equivalent simple loops on $2$-bridge spheres in $2$-bridge link complements (I), arXiv:1010.2232.

    [21]

    D. Lee and M. SakumaHomotopically equivalent simple loops on $2$-bridge spheres in $2$-bridge link complements (II), arXiv:1103.0856.

    [22]

    D. Lee and M. SakumaHomotopically equivalent simple loops on $2$-bridge spheres in $2$-bridge link complements (III), arXiv:1111.3562.

    [23]

    D. Lee and M. SakumaA variation of McShane's identity for $2$-bridge links, arXiv:1112.5859.

    [24]

    D. Lee and M. SakumaEpimorphisms from $2$-bridge link groups onto Heckoid groups (I), Hiroshima Math. J., to appear, arXiv:1205.4631.

    [25]

    D. Lee and M. SakumaEpimorphisms from $2$-bridge link groups onto Heckoid groups (II), Hiroshima Math. J., to appear, arXiv:1206.0429.

    [26]

    D. Lee and M. SakumaHomotopically equivalent simple loops on $2$-bridge spheres in even Heckoid orbifold for $2$-bridge links, preliminary notes.

    [27]

    D. Lee and M. SakumaA variation of McShane's identity for even Heckoid orbifolds for $2$-bridge links, in preparation.

    [28]

    R. C. Lyndon and P. E. Schupp, "Combinatorial Group Theory," Springer-Verlag, Berlin, 1977.

    [29]

    G. McShane, "A Remarkable Identity for Lengths of Curves," Ph. D. Thesis, University of Warwick, 1991.

    [30]

    G. McShane, Simple geodesics and a series constant over Teichmuller space, Invent. Math., 132 (1998), 607-632.

    [31]

    M. Mecchia and B. Zimmermann, On a class of hyperbolic 3-orbifolds of small volume and small Heegaard genus associated to $2$-bridge links, Rend. Circ. Mat. Palermo, 49 (2000), 41-60.

    [32]

    M. Mirzakhani, Simple geodesics and Weil-Petersson volumes of moduli spaces of bordered Riemann surfaces, Invent. Math., 167 (2007), 179-222.

    [33]

    B. B. Newman, Some results on one-relator groups, Bull. Amer. Math. Soc., 74 (1968), 568-571.

    [34]

    T. Ohtsuki, R. Riley and M. Sakuma, Epimorphisms between $2$-bridge link groups, Geom. Topol. Monogr., 14 (2008), 417-450.

    [35]

    R. Riley, Parabolic representations of knot groups. I, Proc. London Math. Soc., 24 (1972), 217-242.

    [36]

    R. Riley, Algebra for Heckoid groups, Trans. Amer. Math. Soc., 334 (1992), 389-409.doi: 10.1090/S0002-9947-1992-1107029-9.

    [37]

    R. RileyA personal account of the discovery of hyperbolic structures on some knot complements. With a postscript by M. B. Brin, G. A. Jones and D. Singerman, preprint.

    [38]

    S. P. Tan, Y. L. Wong and Y. Zhang, $\SL(2,\mathbbC)$ character variety of a one-holed torus, Electon. Res. Announc. Amer. Math. Soc., 11 (2005), 103-110.

    [39]

    S. P. Tan, Y. L. Wong and Y. Zhang, Generalizations of McShane's identity to hyperbolic cone-surfaces, J. Differential Geom., 72 (2006), 73-112.

    [40]

    S. P. Tan, Y. L. Wong and Y. Zhang, Necessary and sufficient conditions for McShane's identity and variations, Geom. Dedicata, 119 (2006), 119-217.

    [41]

    S. P. Tan, Y. L. Wong and Y. Zhang, Generalized Markoff maps and McShane's identity, Adv. Math., 217 (2008), 761-813.

    [42]

    S. P. Tan, Y. L. Wong and Y. Zhang, End invariants for $SL(2,\mathbbC)$ characters of the one-holed torus, Amer. J. Math., 130 (2008), 385-412.doi: 10.1353/ajm.2008.0010.

    [43]

    S. P. Tan, Y. L. Wong and Y. Zhang, McShane's identity for classical Schottky groups, Pacific J. Math., 37 (2008), 183-200.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(87) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return