Citation: |
[1] |
C. Adams, Hyperbolic 3-manifolds with two generators, Comm. Anal. Geom., 4 (1996), 181-206. |
[2] |
I. Agol, The classification of non-free $2$-parabolic generator Kleinian groups, Slides of talks given at Austin AMS Meeting and Budapest Bolyai conference, July 2002, Budapest, Hungary. |
[3] |
H. Akiyoshi, H. Miyachi and M. Sakuma, A refinement of McShane's identity for quasifuchsian punctured torus groups, In the Tradition of Ahlfors and Bers, III, Contemporary Math., 355 (2004), 21-40. |
[4] |
H. Akiyoshi, H. Miyachi and M. Sakuma, Variations of McShane's identity for punctured surface groups, Proceedings of the Workshop "Spaces of Kleinian groups and hyperbolic 3-manifolds'', London Math. Soc., Lecture Note Series, 329 (2006), 151-185. |
[5] |
H. Akiyoahi, M. Sakuma, M. Wada and Y. Yamashita, Punctured torus groups and $2$-bridge knot groups (I), Lecture Notes in Mathematics, 1909, Springer, Berlin, 2007. |
[6] |
M. Boileau and J. Porti, Geometrization of 3-orbifolds of cyclic type, Appendix A by Michael Heusener and Porti, Astérisque No. 272 (2001). |
[7] |
M. Boileau and B. Zimmermann, The $\pi$-orbifold group of a link, Math. Z., 200 (1989), 187-208. |
[8] |
B. H. Bowditch, A proof of McShane's identity via Markoff triples, Bull. London Math. Soc., 28 (1996), 73-78. |
[9] |
B. H. Bowditch, Markoff triples and quasifuchsian groups, Proc. London Math. Soc., 77 (1998), 697-736. |
[10] |
B. H. Bowditch, A variation of McShane's identity for once-punctured torus bundles, Topology, 36 (1997), 325-334. |
[11] |
D. Cooper, C. D. Hodgson and S. P. Kerckhoff, Three-dimensional orbifolds and cone-manifolds, MSJ Memoirs, 5, Mathematical Society of Japan, Tokyo, 2000. |
[12] |
C. Gordon, Problems, Workshop on Heegaard Splittings, 401-411, Geom. Topol. Monogr., 12, Geom. Topol. Publ., Coventry, 2007. |
[13] |
E. Hecke, Über die Bestimung Dirichletscher Reihen durch ihre Funktionalgleichung, Math. Ann., 112 (1936), 664-699. |
[14] |
K. N. Jones and A. W. Reid, Minimal index torsion-free subgroups of Kleinian groups, Math. Ann., 310 (1998), 235-250. |
[15] |
M. Kapovich, Hyperbolic manifolds and discrete groups, Progress in Mathematics, 183, Birkhäuser Boston, Inc., Boston, MA, 2001. |
[16] |
L. Keen and C. Series, The Riley slice of Schottky space, Proc. London Math. Soc., 69 (1994), 72-90. |
[17] |
Y. Komori and C. Series, The Riley slice revised, in "Epstein Birthday Shrift" (eds. I. Rivin, C. Rourke and C. Series), Geom. Topol. Monogr., 1 (1999), 303-316. |
[18] |
D. Lee and M. Sakuma, Simple loops on $2$-bridge spheres in $2$-bridge link complements, Electron. Res. Announc. Math. Sci., 18 (2011), 97-111. |
[19] |
D. Lee and M. Sakuma, Epimorphisms between $2$-bridge link groups: Homotopically trivial simple loops on $2$-bridge spheres, Proc. London Math. Soc., 104 (2012), 359-386.doi: 10.1112/plms/pdr036. |
[20] |
D. Lee and M. Sakuma, Homotopically equivalent simple loops on $2$-bridge spheres in $2$-bridge link complements (I), arXiv:1010.2232. |
[21] |
D. Lee and M. Sakuma, Homotopically equivalent simple loops on $2$-bridge spheres in $2$-bridge link complements (II), arXiv:1103.0856. |
[22] |
D. Lee and M. Sakuma, Homotopically equivalent simple loops on $2$-bridge spheres in $2$-bridge link complements (III), arXiv:1111.3562. |
[23] |
D. Lee and M. Sakuma, A variation of McShane's identity for $2$-bridge links, arXiv:1112.5859. |
[24] |
D. Lee and M. Sakuma, Epimorphisms from $2$-bridge link groups onto Heckoid groups (I), Hiroshima Math. J., to appear, arXiv:1205.4631. |
[25] |
D. Lee and M. Sakuma, Epimorphisms from $2$-bridge link groups onto Heckoid groups (II), Hiroshima Math. J., to appear, arXiv:1206.0429. |
[26] |
D. Lee and M. Sakuma, Homotopically equivalent simple loops on $2$-bridge spheres in even Heckoid orbifold for $2$-bridge links, preliminary notes. |
[27] |
D. Lee and M. Sakuma, A variation of McShane's identity for even Heckoid orbifolds for $2$-bridge links, in preparation. |
[28] |
R. C. Lyndon and P. E. Schupp, "Combinatorial Group Theory," Springer-Verlag, Berlin, 1977. |
[29] |
G. McShane, "A Remarkable Identity for Lengths of Curves," Ph. D. Thesis, University of Warwick, 1991. |
[30] |
G. McShane, Simple geodesics and a series constant over Teichmuller space, Invent. Math., 132 (1998), 607-632. |
[31] |
M. Mecchia and B. Zimmermann, On a class of hyperbolic 3-orbifolds of small volume and small Heegaard genus associated to $2$-bridge links, Rend. Circ. Mat. Palermo, 49 (2000), 41-60. |
[32] |
M. Mirzakhani, Simple geodesics and Weil-Petersson volumes of moduli spaces of bordered Riemann surfaces, Invent. Math., 167 (2007), 179-222. |
[33] |
B. B. Newman, Some results on one-relator groups, Bull. Amer. Math. Soc., 74 (1968), 568-571. |
[34] |
T. Ohtsuki, R. Riley and M. Sakuma, Epimorphisms between $2$-bridge link groups, Geom. Topol. Monogr., 14 (2008), 417-450. |
[35] |
R. Riley, Parabolic representations of knot groups. I, Proc. London Math. Soc., 24 (1972), 217-242. |
[36] |
R. Riley, Algebra for Heckoid groups, Trans. Amer. Math. Soc., 334 (1992), 389-409.doi: 10.1090/S0002-9947-1992-1107029-9. |
[37] |
R. Riley, A personal account of the discovery of hyperbolic structures on some knot complements. With a postscript by M. B. Brin, G. A. Jones and D. Singerman, preprint. |
[38] |
S. P. Tan, Y. L. Wong and Y. Zhang, $\SL(2,\mathbbC)$ character variety of a one-holed torus, Electon. Res. Announc. Amer. Math. Soc., 11 (2005), 103-110. |
[39] |
S. P. Tan, Y. L. Wong and Y. Zhang, Generalizations of McShane's identity to hyperbolic cone-surfaces, J. Differential Geom., 72 (2006), 73-112. |
[40] |
S. P. Tan, Y. L. Wong and Y. Zhang, Necessary and sufficient conditions for McShane's identity and variations, Geom. Dedicata, 119 (2006), 119-217. |
[41] |
S. P. Tan, Y. L. Wong and Y. Zhang, Generalized Markoff maps and McShane's identity, Adv. Math., 217 (2008), 761-813. |
[42] |
S. P. Tan, Y. L. Wong and Y. Zhang, End invariants for $SL(2,\mathbbC)$ characters of the one-holed torus, Amer. J. Math., 130 (2008), 385-412.doi: 10.1353/ajm.2008.0010. |
[43] |
S. P. Tan, Y. L. Wong and Y. Zhang, McShane's identity for classical Schottky groups, Pacific J. Math., 37 (2008), 183-200. |