-
Previous Article
Nullspaces of conformally invariant operators. Applications to $\boldsymbol{Q_k}$-curvature
- ERA-MS Home
- This Volume
-
Next Article
Infinite determinantal measures
The structure theorems for Yetter-Drinfeld comodule algebras
1. | Department of Mathematics and Information, Ludong University, Yantai, Shandong 264025, China |
References:
[1] |
L. B. Li and P. Zhang, Twisted Hopf algebras, Ringel-Hall algebras, and Green's categories, J. Algebra, 231 (2000), 713-743.
doi: 10.1006/jabr.2000.8362. |
[2] |
S. Montgomery, "Hopf Algebras and Their Actions on Rings," CBMS Regional Conference Series in Mathematics, 82, Published for the Conference Board of the Mathematical Sciences, Washington, DC; by the American Mathematical Society, Providence, RI, 1993. |
[3] |
D. Radford, The structure of Hopf algebras with a projection, J. Algebra, 92 (1985), 322-347.
doi: 10.1016/0021-8693(85)90124-3. |
[4] |
Y. Doi, Hopf modules in Yetter-Drinfeld categories, Comm. Algebra, 26 (1998), 3057-3070.
doi: 10.1080/00927879808826327. |
[5] |
P. Schauenburg, Hopf modules and Yetter-Drinfel'd modules, J. Algebra, 169 (1994), 874-890. |
[6] |
Y. Sommerhäuser, "Yetter-Drinfeld Hopf Algebras over Groups of Prime Order," Lecture Notes in Math, Vol. 1789, Springer, Berlin, 2002. |
show all references
References:
[1] |
L. B. Li and P. Zhang, Twisted Hopf algebras, Ringel-Hall algebras, and Green's categories, J. Algebra, 231 (2000), 713-743.
doi: 10.1006/jabr.2000.8362. |
[2] |
S. Montgomery, "Hopf Algebras and Their Actions on Rings," CBMS Regional Conference Series in Mathematics, 82, Published for the Conference Board of the Mathematical Sciences, Washington, DC; by the American Mathematical Society, Providence, RI, 1993. |
[3] |
D. Radford, The structure of Hopf algebras with a projection, J. Algebra, 92 (1985), 322-347.
doi: 10.1016/0021-8693(85)90124-3. |
[4] |
Y. Doi, Hopf modules in Yetter-Drinfeld categories, Comm. Algebra, 26 (1998), 3057-3070.
doi: 10.1080/00927879808826327. |
[5] |
P. Schauenburg, Hopf modules and Yetter-Drinfel'd modules, J. Algebra, 169 (1994), 874-890. |
[6] |
Y. Sommerhäuser, "Yetter-Drinfeld Hopf Algebras over Groups of Prime Order," Lecture Notes in Math, Vol. 1789, Springer, Berlin, 2002. |
[1] |
Hari Bercovici, Viorel Niţică. A Banach algebra version of the Livsic theorem. Discrete and Continuous Dynamical Systems, 1998, 4 (3) : 523-534. doi: 10.3934/dcds.1998.4.523 |
[2] |
Neşet Deniz Turgay. On the mod p Steenrod algebra and the Leibniz-Hopf algebra. Electronic Research Archive, 2020, 28 (2) : 951-959. doi: 10.3934/era.2020050 |
[3] |
Matthew Foreman, Benjamin Weiss. From odometers to circular systems: A global structure theorem. Journal of Modern Dynamics, 2019, 15: 345-423. doi: 10.3934/jmd.2019024 |
[4] |
Pengmiao Hao, Xuechen Wang, Junjie Wei. Global Hopf bifurcation of a population model with stage structure and strong Allee effect. Discrete and Continuous Dynamical Systems - S, 2017, 10 (5) : 973-993. doi: 10.3934/dcdss.2017051 |
[5] |
Jaume Llibre, Claudio Vidal. Hopf periodic orbits for a ratio--dependent predator--prey model with stage structure. Discrete and Continuous Dynamical Systems - B, 2016, 21 (6) : 1859-1867. doi: 10.3934/dcdsb.2016026 |
[6] |
Tongtong Chen, Jixun Chu. Hopf bifurcation for a predator-prey model with age structure and ratio-dependent response function incorporating a prey refuge. Discrete and Continuous Dynamical Systems - B, 2022 doi: 10.3934/dcdsb.2022082 |
[7] |
Robert I. McLachlan, Ander Murua. The Lie algebra of classical mechanics. Journal of Computational Dynamics, 2019, 6 (2) : 345-360. doi: 10.3934/jcd.2019017 |
[8] |
Richard H. Cushman, Jędrzej Śniatycki. On Lie algebra actions. Discrete and Continuous Dynamical Systems - S, 2020, 13 (4) : 1115-1129. doi: 10.3934/dcdss.2020066 |
[9] |
Paul Breiding, Türkü Özlüm Çelik, Timothy Duff, Alexander Heaton, Aida Maraj, Anna-Laura Sattelberger, Lorenzo Venturello, Oǧuzhan Yürük. Nonlinear algebra and applications. Numerical Algebra, Control and Optimization, 2021 doi: 10.3934/naco.2021045 |
[10] |
Yves Coudène. The Hopf argument. Journal of Modern Dynamics, 2007, 1 (1) : 147-153. doi: 10.3934/jmd.2007.1.147 |
[11] |
Heinz-Jürgen Flad, Gohar Harutyunyan. Ellipticity of quantum mechanical Hamiltonians in the edge algebra. Conference Publications, 2011, 2011 (Special) : 420-429. doi: 10.3934/proc.2011.2011.420 |
[12] |
Franz W. Kamber and Peter W. Michor. Completing Lie algebra actions to Lie group actions. Electronic Research Announcements, 2004, 10: 1-10. |
[13] |
Viktor Levandovskyy, Gerhard Pfister, Valery G. Romanovski. Evaluating cyclicity of cubic systems with algorithms of computational algebra. Communications on Pure and Applied Analysis, 2012, 11 (5) : 2023-2035. doi: 10.3934/cpaa.2012.11.2023 |
[14] |
Chris Bernhardt. Vertex maps for trees: Algebra and periods of periodic orbits. Discrete and Continuous Dynamical Systems, 2006, 14 (3) : 399-408. doi: 10.3934/dcds.2006.14.399 |
[15] |
Ryan T. Botts, Ale Jan Homburg, Todd R. Young. The Hopf bifurcation with bounded noise. Discrete and Continuous Dynamical Systems, 2012, 32 (8) : 2997-3007. doi: 10.3934/dcds.2012.32.2997 |
[16] |
Matteo Franca, Russell Johnson, Victor Muñoz-Villarragut. On the nonautonomous Hopf bifurcation problem. Discrete and Continuous Dynamical Systems - S, 2016, 9 (4) : 1119-1148. doi: 10.3934/dcdss.2016045 |
[17] |
John Guckenheimer, Hinke M. Osinga. The singular limit of a Hopf bifurcation. Discrete and Continuous Dynamical Systems, 2012, 32 (8) : 2805-2823. doi: 10.3934/dcds.2012.32.2805 |
[18] |
Pengliang Xu, Xiaomin Tang. Graded post-Lie algebra structures and homogeneous Rota-Baxter operators on the Schrödinger-Virasoro algebra. Electronic Research Archive, 2021, 29 (4) : 2771-2789. doi: 10.3934/era.2021013 |
[19] |
Dmitriy Yu. Volkov. The Hopf -- Hopf bifurcation with 2:1 resonance: Periodic solutions and invariant tori. Conference Publications, 2015, 2015 (special) : 1098-1104. doi: 10.3934/proc.2015.1098 |
[20] |
José Gómez-Torrecillas, F. J. Lobillo, Gabriel Navarro. Convolutional codes with a matrix-algebra word-ambient. Advances in Mathematics of Communications, 2016, 10 (1) : 29-43. doi: 10.3934/amc.2016.10.29 |
2020 Impact Factor: 0.929
Tools
Metrics
Other articles
by authors
[Back to Top]