2013, 20: 43-50. doi: 10.3934/era.2013.20.43

Nullspaces of conformally invariant operators. Applications to $\boldsymbol{Q_k}$-curvature

1. 

Department of Mathematics and Statistics, McGill University, Montréal, Canada, Canada

2. 

Department of Mathematics, University of Auckland, New Zealand &, Mathematical Sciences Institute, Australian National University, Canberra, Australia

3. 

Department of Mathematical Sciences, Seoul National University, Seoul, South Korea

Received  June 2012 Revised  March 2013 Published  March 2013

We study conformal invariants that arise from functions in the nullspace of conformally covariant differential operators. The invariants include nodal sets and the topology of nodal domains of eigenfunctions in the kernel of GJMS operators. We establish that on any manifold of dimension $n\geq 3$, there exist many metrics for which our invariants are nontrivial. We discuss new applications to curvature prescription problems.
Citation: Yaiza Canzani, A. Rod Gover, Dmitry Jakobson, Raphaël Ponge. Nullspaces of conformally invariant operators. Applications to $\boldsymbol{Q_k}$-curvature. Electronic Research Announcements, 2013, 20: 43-50. doi: 10.3934/era.2013.20.43
References:
[1]

P. Baird, A. Fardoun and R. Regbaoui, Prescribed Q-curvature on manifolds of even dimension, J. Geom. Phys., 59 (2009), 221-233. doi: 10.1016/j.geomphys.2008.10.007.

[2]

T. Branson and B. Ørsted, Conformal geometry and global invariants, Differential Geometry and its Applications, 1 (1991), 279-308. doi: 10.1016/0926-2245(91)90004-S.

[3]

S. Brendle, Convergence of the $Q$-curvature flow on $S^4$, Adv. Math., 205 (2006), 1-32. doi: 10.1016/j.aim.2005.07.002.

[4]

Y. Canzani, On the multiplicity of the eigenvalues of the conformally covariant operators, E-print, arXiv:1207.0648, July 2012.

[5]

Y. Canzani, A. R. Gover, D. Jakobson and R. Ponge, Conformal invariants from nodal sets. I. Negative Eigenvalues and Curvature Prescription, Int. Mat. Res. Notices, (2013). doi: 10.1093/imrn/rns295.

[6]

Y. Canzani, A. R. Gover, D. Jakobson and R. Ponge, Conformal invariants II: High-dimensional nullspace,, in preparation., (). 

[7]

Z. Djadli and A. Malchiodi, Existence of conformal metrics with constant $Q$-curvature, Ann. of Math. (2), 168 (2008), 813-858. doi: 10.4007/annals.2008.168.813.

[8]

C. L. Fefferman and C. R. Graham, $Q$-curvature and Poincaré metrics, Math. Res. Lett., 9 (2002), 139-151.

[9]

A. R. Gover, Q curvature prescription; forbidden functions and the GJMS null space, Proc. Amer. Math. Soc., 138 (2010), 1453-1459. doi: 10.1090/S0002-9939-09-10111-9.

[10]

C. S. Gordon and E. N. Wilson, The spectrum of the Laplacian on Riemannian Heisenberg manifolds, Michigan Math. J., 33 (1986), 253-271. doi: 10.1307/mmj/1029003354.

[11]

C. R. Graham, R. Jenne, L. J. Mason and G. A. Sparling, Conformally invariant powers of the Laplacian. I. Existence, J. Lond. Math. Soc. (2), 46 (1992), 557-565. doi: 10.1112/jlms/s2-46.3.557.

[12]

C. Graham and M. Zworski, Scattering matrix in conformal geometry, Invent. Math., 152 (2003), 89-118. doi: 10.1007/s00222-002-0268-1.

[13]

J. Kazdan and F. Warner, Scalar curvature and conformal deformations of Riemannian structure, J. Diff. Geom., 10 (1975), 113-134.

[14]

K. Kodaira and D. Spencer, On deformations of complex analytic structures. III. Stability theorems for complex structures, Ann. of Math. (2), 71 (1960), 43-76. doi: 10.2307/1969879.

[15]

J. Lohkamp, Discontinuity of geometric expansions, Comment. Math. Helvetici, 71 (1996), 213-228. doi: 10.1007/BF02566417.

[16]

T. Parker and S. Rosenberg, Invariants of conformal Laplacians, J. Differential Geom., 25 (1987), 199-222.

[17]

R. Ponge, Continuity and multiplicity of eigenvalues of Fredholm operators. Applications to conformally invariant operators,, in preparation., (). 

[18]

M. Teytel, How rare are multiple eigenvalues?, Comm. Pure Appl. Math., 52 (1999), 917-934.

show all references

References:
[1]

P. Baird, A. Fardoun and R. Regbaoui, Prescribed Q-curvature on manifolds of even dimension, J. Geom. Phys., 59 (2009), 221-233. doi: 10.1016/j.geomphys.2008.10.007.

[2]

T. Branson and B. Ørsted, Conformal geometry and global invariants, Differential Geometry and its Applications, 1 (1991), 279-308. doi: 10.1016/0926-2245(91)90004-S.

[3]

S. Brendle, Convergence of the $Q$-curvature flow on $S^4$, Adv. Math., 205 (2006), 1-32. doi: 10.1016/j.aim.2005.07.002.

[4]

Y. Canzani, On the multiplicity of the eigenvalues of the conformally covariant operators, E-print, arXiv:1207.0648, July 2012.

[5]

Y. Canzani, A. R. Gover, D. Jakobson and R. Ponge, Conformal invariants from nodal sets. I. Negative Eigenvalues and Curvature Prescription, Int. Mat. Res. Notices, (2013). doi: 10.1093/imrn/rns295.

[6]

Y. Canzani, A. R. Gover, D. Jakobson and R. Ponge, Conformal invariants II: High-dimensional nullspace,, in preparation., (). 

[7]

Z. Djadli and A. Malchiodi, Existence of conformal metrics with constant $Q$-curvature, Ann. of Math. (2), 168 (2008), 813-858. doi: 10.4007/annals.2008.168.813.

[8]

C. L. Fefferman and C. R. Graham, $Q$-curvature and Poincaré metrics, Math. Res. Lett., 9 (2002), 139-151.

[9]

A. R. Gover, Q curvature prescription; forbidden functions and the GJMS null space, Proc. Amer. Math. Soc., 138 (2010), 1453-1459. doi: 10.1090/S0002-9939-09-10111-9.

[10]

C. S. Gordon and E. N. Wilson, The spectrum of the Laplacian on Riemannian Heisenberg manifolds, Michigan Math. J., 33 (1986), 253-271. doi: 10.1307/mmj/1029003354.

[11]

C. R. Graham, R. Jenne, L. J. Mason and G. A. Sparling, Conformally invariant powers of the Laplacian. I. Existence, J. Lond. Math. Soc. (2), 46 (1992), 557-565. doi: 10.1112/jlms/s2-46.3.557.

[12]

C. Graham and M. Zworski, Scattering matrix in conformal geometry, Invent. Math., 152 (2003), 89-118. doi: 10.1007/s00222-002-0268-1.

[13]

J. Kazdan and F. Warner, Scalar curvature and conformal deformations of Riemannian structure, J. Diff. Geom., 10 (1975), 113-134.

[14]

K. Kodaira and D. Spencer, On deformations of complex analytic structures. III. Stability theorems for complex structures, Ann. of Math. (2), 71 (1960), 43-76. doi: 10.2307/1969879.

[15]

J. Lohkamp, Discontinuity of geometric expansions, Comment. Math. Helvetici, 71 (1996), 213-228. doi: 10.1007/BF02566417.

[16]

T. Parker and S. Rosenberg, Invariants of conformal Laplacians, J. Differential Geom., 25 (1987), 199-222.

[17]

R. Ponge, Continuity and multiplicity of eigenvalues of Fredholm operators. Applications to conformally invariant operators,, in preparation., (). 

[18]

M. Teytel, How rare are multiple eigenvalues?, Comm. Pure Appl. Math., 52 (1999), 917-934.

[1]

Yong Lin, Gábor Lippner, Dan Mangoubi, Shing-Tung Yau. Nodal geometry of graphs on surfaces. Discrete and Continuous Dynamical Systems, 2010, 28 (3) : 1291-1298. doi: 10.3934/dcds.2010.28.1291

[2]

Weiyuan Qiu, Fei Yang, Yongcheng Yin. Quasisymmetric geometry of the Cantor circles as the Julia sets of rational maps. Discrete and Continuous Dynamical Systems, 2016, 36 (6) : 3375-3416. doi: 10.3934/dcds.2016.36.3375

[3]

Alex L Castro, Wyatt Howard, Corey Shanbrom. Bridges between subriemannian geometry and algebraic geometry: Now and then. Conference Publications, 2015, 2015 (special) : 239-247. doi: 10.3934/proc.2015.0239

[4]

Richard Sharp. Conformal Markov systems, Patterson-Sullivan measure on limit sets and spectral triples. Discrete and Continuous Dynamical Systems, 2016, 36 (5) : 2711-2727. doi: 10.3934/dcds.2016.36.2711

[5]

Joachim Escher, Boris Kolev, Marcus Wunsch. The geometry of a vorticity model equation. Communications on Pure and Applied Analysis, 2012, 11 (4) : 1407-1419. doi: 10.3934/cpaa.2012.11.1407

[6]

George W. Patrick. The geometry of convergence in numerical analysis. Journal of Computational Dynamics, 2021, 8 (1) : 33-58. doi: 10.3934/jcd.2021003

[7]

Janina Kotus, Mariusz Urbański. The dynamics and geometry of the Fatou functions. Discrete and Continuous Dynamical Systems, 2005, 13 (2) : 291-338. doi: 10.3934/dcds.2005.13.291

[8]

Katarzyna Grabowska, Paweƚ Urbański. Geometry of Routh reduction. Journal of Geometric Mechanics, 2019, 11 (1) : 23-44. doi: 10.3934/jgm.2019002

[9]

Len G. Margolin, Roy S. Baty. Conservation laws in discrete geometry. Journal of Geometric Mechanics, 2019, 11 (2) : 187-203. doi: 10.3934/jgm.2019010

[10]

Jean-Marc Couveignes, Reynald Lercier. The geometry of some parameterizations and encodings. Advances in Mathematics of Communications, 2014, 8 (4) : 437-458. doi: 10.3934/amc.2014.8.437

[11]

Klas Modin. Geometry of matrix decompositions seen through optimal transport and information geometry. Journal of Geometric Mechanics, 2017, 9 (3) : 335-390. doi: 10.3934/jgm.2017014

[12]

Bernd Kawohl, Jiří Horák. On the geometry of the p-Laplacian operator. Discrete and Continuous Dynamical Systems - S, 2017, 10 (4) : 799-813. doi: 10.3934/dcdss.2017040

[13]

Matteo Novaga, Enrico Valdinoci. The geometry of mesoscopic phase transition interfaces. Discrete and Continuous Dynamical Systems, 2007, 19 (4) : 777-798. doi: 10.3934/dcds.2007.19.777

[14]

Abbas Bahri. Recent results in contact form geometry. Discrete and Continuous Dynamical Systems, 2004, 10 (1&2) : 21-30. doi: 10.3934/dcds.2004.10.21

[15]

Giuseppe Gaeta. On the geometry of twisted prolongations, and dynamical systems. Discrete and Continuous Dynamical Systems - S, 2020, 13 (4) : 1209-1227. doi: 10.3934/dcdss.2020070

[16]

François Lalonde, Yasha Savelyev. On the injectivity radius in Hofer's geometry. Electronic Research Announcements, 2014, 21: 177-185. doi: 10.3934/era.2014.21.177

[17]

Oğul Esen, Partha Guha. On the geometry of the Schmidt-Legendre transformation. Journal of Geometric Mechanics, 2018, 10 (3) : 251-291. doi: 10.3934/jgm.2018010

[18]

Manuel Gutiérrez. Lorentz geometry technique in nonimaging optics. Conference Publications, 2003, 2003 (Special) : 386-392. doi: 10.3934/proc.2003.2003.386

[19]

Răzvan M. Tudoran, Anania Gîrban. On the Hamiltonian dynamics and geometry of the Rabinovich system. Discrete and Continuous Dynamical Systems - B, 2011, 15 (3) : 789-823. doi: 10.3934/dcdsb.2011.15.789

[20]

Weihong Guo, Jing Qin. A geometry guided image denoising scheme. Inverse Problems and Imaging, 2013, 7 (2) : 499-521. doi: 10.3934/ipi.2013.7.499

2020 Impact Factor: 0.929

Metrics

  • PDF downloads (83)
  • HTML views (0)
  • Cited by (1)

[Back to Top]