2013, 20: 97-102. doi: 10.3934/era.2013.20.97

Area preserving maps on $\boldsymbol{S^2}$: A lower bound on the $\boldsymbol{C^0}$-norm using symplectic spectral invariants

1. 

0287 Frist Center, Princeton University, Princeton, NJ 08544, United States

2. 

Penn State University Mathematics Department, 206 McAllister Building, University Park, PA 16802, United States

Received  September 2013 Published  November 2013

We use the Hofer norm to show that all Hamiltonian diffeomorphisms with compact support in $\mathbb{R}^{2n}$ that displace an open connected set with a nonzero Hofer-Zehnder capacity move a point farther than a capacity-dependent constant. In $\mathbb{R}^2$, this result is extended to all compactly supported area-preserving homeomorphisms. Next, using the spectral norm, we show the result holds for Hamiltonian diffeomorphisms on closed surfaces. We then show that all area-preserving homeomorphisms of $S^2$ and $\mathbb{RP}^2$ that displace the closure of an open connected set of fixed area move a point farther than an area-dependent constant.
Citation: Daniel N. Dore, Andrew D. Hanlon. Area preserving maps on $\boldsymbol{S^2}$: A lower bound on the $\boldsymbol{C^0}$-norm using symplectic spectral invariants. Electronic Research Announcements, 2013, 20: 97-102. doi: 10.3934/era.2013.20.97
References:
[1]

S. Seyfaddini, The displaced disks problem via symplectic topology,, \arXiv{1307.5704}., ().   Google Scholar

[2]

H. Hofer, Estimates for the energy of a symplectic map, Comment. Math Helv., 68 (1993), 48-72. doi: 10.1007/BF02565809.  Google Scholar

[3]

S. Smale, Diffeomorphisms of the 2-sphere, Proc. Amer. Math. Soc., 10 (1959), 621-626.  Google Scholar

[4]

M. Gromov, Pseudoholomorphic curves in symplectic manifolds, Invent. Math., 82 (1985), 307-347. doi: 10.1007/BF01388806.  Google Scholar

[5]

H. Hofer and E. Zehnder, Symplectic Invariants and Hamiltonian Dynamics, Birkhäuser Advanced Texts: Basler Lehrbücher, Birkhäuser Verlag, Basel, 1994. doi: 10.1007/978-3-0348-8540-9.  Google Scholar

[6]

Y. G. Oh, $C^0$-coerciveness of Moser's problem and smoothing area preserving homeomorphism,, \arXiv{math/0601183v5}., ().   Google Scholar

[7]

S. Seyfaddini, $C^0$-limits of Hamiltonian flows and Oh-Schwarz spectral invariants,, \arXiv{1109.4123v2}., ().   Google Scholar

[8]

Y.-G. Oh, Spectral invariants, analysis of the Floer moduli space, and geometry of the Hamiltonian diffeomorphism group, Duke Math. J., 130 (2005), 199-295.  Google Scholar

[9]

M. Usher, The sharp energy-capacity inequality, Comm. Contemp. Math., 12 (2010), 457-473. doi: 10.1142/S0219199710003889.  Google Scholar

[10]

S. Seyfaddini, Descent and $C^0$-rigidity of spectral invariants on monotone symplectic manifolds, J. Topol. Anal., 4 (2012), 481-498. doi: 10.1142/S1793525312500215.  Google Scholar

show all references

References:
[1]

S. Seyfaddini, The displaced disks problem via symplectic topology,, \arXiv{1307.5704}., ().   Google Scholar

[2]

H. Hofer, Estimates for the energy of a symplectic map, Comment. Math Helv., 68 (1993), 48-72. doi: 10.1007/BF02565809.  Google Scholar

[3]

S. Smale, Diffeomorphisms of the 2-sphere, Proc. Amer. Math. Soc., 10 (1959), 621-626.  Google Scholar

[4]

M. Gromov, Pseudoholomorphic curves in symplectic manifolds, Invent. Math., 82 (1985), 307-347. doi: 10.1007/BF01388806.  Google Scholar

[5]

H. Hofer and E. Zehnder, Symplectic Invariants and Hamiltonian Dynamics, Birkhäuser Advanced Texts: Basler Lehrbücher, Birkhäuser Verlag, Basel, 1994. doi: 10.1007/978-3-0348-8540-9.  Google Scholar

[6]

Y. G. Oh, $C^0$-coerciveness of Moser's problem and smoothing area preserving homeomorphism,, \arXiv{math/0601183v5}., ().   Google Scholar

[7]

S. Seyfaddini, $C^0$-limits of Hamiltonian flows and Oh-Schwarz spectral invariants,, \arXiv{1109.4123v2}., ().   Google Scholar

[8]

Y.-G. Oh, Spectral invariants, analysis of the Floer moduli space, and geometry of the Hamiltonian diffeomorphism group, Duke Math. J., 130 (2005), 199-295.  Google Scholar

[9]

M. Usher, The sharp energy-capacity inequality, Comm. Contemp. Math., 12 (2010), 457-473. doi: 10.1142/S0219199710003889.  Google Scholar

[10]

S. Seyfaddini, Descent and $C^0$-rigidity of spectral invariants on monotone symplectic manifolds, J. Topol. Anal., 4 (2012), 481-498. doi: 10.1142/S1793525312500215.  Google Scholar

[1]

Liqun Qi, Shenglong Hu, Yanwei Xu. Spectral norm and nuclear norm of a third order tensor. Journal of Industrial & Management Optimization, 2021  doi: 10.3934/jimo.2021010

[2]

Zhen-Zhen Tao, Bing Sun. Galerkin spectral method for elliptic optimal control problem with $L^2$-norm control constraint. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021220

[3]

Zongyuan Li, Weinan Wang. Norm inflation for the Boussinesq system. Discrete & Continuous Dynamical Systems - B, 2021, 26 (10) : 5449-5463. doi: 10.3934/dcdsb.2020353

[4]

Catalin Badea, Bernhard Beckermann, Michel Crouzeix. Intersections of several disks of the Riemann sphere as $K$-spectral sets. Communications on Pure & Applied Analysis, 2009, 8 (1) : 37-54. doi: 10.3934/cpaa.2009.8.37

[5]

Braxton Osting, Jérôme Darbon, Stanley Osher. Statistical ranking using the $l^{1}$-norm on graphs. Inverse Problems & Imaging, 2013, 7 (3) : 907-926. doi: 10.3934/ipi.2013.7.907

[6]

Karina Samvelyan, Frol Zapolsky. Rigidity of the ${{L}^{p}}$-norm of the Poisson bracket on surfaces. Electronic Research Announcements, 2017, 24: 28-37. doi: 10.3934/era.2017.24.004

[7]

Juan H. Arredondo, Francisco J. Mendoza, Alfredo Reyes. On the norm continuity of the hk-fourier transform. Electronic Research Announcements, 2018, 25: 36-47. doi: 10.3934/era.2018.25.005

[8]

Frédéric Bernicot, Vjekoslav Kovač. Sobolev norm estimates for a class of bilinear multipliers. Communications on Pure & Applied Analysis, 2014, 13 (3) : 1305-1315. doi: 10.3934/cpaa.2014.13.1305

[9]

Nobu Kishimoto. A remark on norm inflation for nonlinear Schrödinger equations. Communications on Pure & Applied Analysis, 2019, 18 (3) : 1375-1402. doi: 10.3934/cpaa.2019067

[10]

Duo Wang, Zheng-Fen Jin, Youlin Shang. A penalty decomposition method for nuclear norm minimization with l1 norm fidelity term. Evolution Equations & Control Theory, 2019, 8 (4) : 695-708. doi: 10.3934/eect.2019034

[11]

Fengmin Xu, Yanfei Wang. Recovery of seismic wavefields by an lq-norm constrained regularization method. Inverse Problems & Imaging, 2018, 12 (5) : 1157-1172. doi: 10.3934/ipi.2018048

[12]

Wael Bahsoun, Benoît Saussol. Linear response in the intermittent family: Differentiation in a weighted $C^0$-norm. Discrete & Continuous Dynamical Systems, 2016, 36 (12) : 6657-6668. doi: 10.3934/dcds.2016089

[13]

Ferenc Weisz. Dual spaces of mixed-norm martingale Hardy spaces. Communications on Pure & Applied Analysis, 2021, 20 (2) : 681-695. doi: 10.3934/cpaa.2020285

[14]

Axel Grünrock, Sebastian Herr. The Fourier restriction norm method for the Zakharov-Kuznetsov equation. Discrete & Continuous Dynamical Systems, 2014, 34 (5) : 2061-2068. doi: 10.3934/dcds.2014.34.2061

[15]

Donghui Yang, Jie Zhong. Optimal actuator location of the minimum norm controls for stochastic heat equations. Mathematical Control & Related Fields, 2018, 8 (3&4) : 1081-1095. doi: 10.3934/mcrf.2018046

[16]

Donglei Du, Xiaoyue Jiang, Guochuan Zhang. Optimal preemptive online scheduling to minimize lp norm on two processors. Journal of Industrial & Management Optimization, 2005, 1 (3) : 345-351. doi: 10.3934/jimo.2005.1.345

[17]

Pia Heins, Michael Moeller, Martin Burger. Locally sparse reconstruction using the $l^{1,\infty}$-norm. Inverse Problems & Imaging, 2015, 9 (4) : 1093-1137. doi: 10.3934/ipi.2015.9.1093

[18]

Heeralal Janwa, Fernando L. Piñero. On parameters of subfield subcodes of extended norm-trace codes. Advances in Mathematics of Communications, 2017, 11 (2) : 379-388. doi: 10.3934/amc.2017032

[19]

Irena Pawłow, Wojciech M. Zajączkowski. Unique solvability of a nonlinear thermoviscoelasticity system in Sobolev space with a mixed norm. Discrete & Continuous Dynamical Systems - S, 2011, 4 (2) : 441-466. doi: 10.3934/dcdss.2011.4.441

[20]

Roger Grimshaw, Dmitry Pelinovsky. Global existence of small-norm solutions in the reduced Ostrovsky equation. Discrete & Continuous Dynamical Systems, 2014, 34 (2) : 557-566. doi: 10.3934/dcds.2014.34.557

2020 Impact Factor: 0.929

Metrics

  • PDF downloads (122)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]