-
Previous Article
On degenerations of moduli of Hitchin pairs
- ERA-MS Home
- This Volume
-
Next Article
The codisc radius capacity
Area preserving maps on $\boldsymbol{S^2}$: A lower bound on the $\boldsymbol{C^0}$-norm using symplectic spectral invariants
1. | 0287 Frist Center, Princeton University, Princeton, NJ 08544, United States |
2. | Penn State University Mathematics Department, 206 McAllister Building, University Park, PA 16802, United States |
References:
[1] |
S. Seyfaddini, The displaced disks problem via symplectic topology,, \arXiv{1307.5704}., ().
|
[2] |
H. Hofer, Estimates for the energy of a symplectic map, Comment. Math Helv., 68 (1993), 48-72.
doi: 10.1007/BF02565809. |
[3] |
S. Smale, Diffeomorphisms of the 2-sphere, Proc. Amer. Math. Soc., 10 (1959), 621-626. |
[4] |
M. Gromov, Pseudoholomorphic curves in symplectic manifolds, Invent. Math., 82 (1985), 307-347.
doi: 10.1007/BF01388806. |
[5] |
H. Hofer and E. Zehnder, Symplectic Invariants and Hamiltonian Dynamics, Birkhäuser Advanced Texts: Basler Lehrbücher, Birkhäuser Verlag, Basel, 1994.
doi: 10.1007/978-3-0348-8540-9. |
[6] |
Y. G. Oh, $C^0$-coerciveness of Moser's problem and smoothing area preserving homeomorphism,, \arXiv{math/0601183v5}., ().
|
[7] |
S. Seyfaddini, $C^0$-limits of Hamiltonian flows and Oh-Schwarz spectral invariants,, \arXiv{1109.4123v2}., ().
|
[8] |
Y.-G. Oh, Spectral invariants, analysis of the Floer moduli space, and geometry of the Hamiltonian diffeomorphism group, Duke Math. J., 130 (2005), 199-295. |
[9] |
M. Usher, The sharp energy-capacity inequality, Comm. Contemp. Math., 12 (2010), 457-473.
doi: 10.1142/S0219199710003889. |
[10] |
S. Seyfaddini, Descent and $C^0$-rigidity of spectral invariants on monotone symplectic manifolds, J. Topol. Anal., 4 (2012), 481-498.
doi: 10.1142/S1793525312500215. |
show all references
References:
[1] |
S. Seyfaddini, The displaced disks problem via symplectic topology,, \arXiv{1307.5704}., ().
|
[2] |
H. Hofer, Estimates for the energy of a symplectic map, Comment. Math Helv., 68 (1993), 48-72.
doi: 10.1007/BF02565809. |
[3] |
S. Smale, Diffeomorphisms of the 2-sphere, Proc. Amer. Math. Soc., 10 (1959), 621-626. |
[4] |
M. Gromov, Pseudoholomorphic curves in symplectic manifolds, Invent. Math., 82 (1985), 307-347.
doi: 10.1007/BF01388806. |
[5] |
H. Hofer and E. Zehnder, Symplectic Invariants and Hamiltonian Dynamics, Birkhäuser Advanced Texts: Basler Lehrbücher, Birkhäuser Verlag, Basel, 1994.
doi: 10.1007/978-3-0348-8540-9. |
[6] |
Y. G. Oh, $C^0$-coerciveness of Moser's problem and smoothing area preserving homeomorphism,, \arXiv{math/0601183v5}., ().
|
[7] |
S. Seyfaddini, $C^0$-limits of Hamiltonian flows and Oh-Schwarz spectral invariants,, \arXiv{1109.4123v2}., ().
|
[8] |
Y.-G. Oh, Spectral invariants, analysis of the Floer moduli space, and geometry of the Hamiltonian diffeomorphism group, Duke Math. J., 130 (2005), 199-295. |
[9] |
M. Usher, The sharp energy-capacity inequality, Comm. Contemp. Math., 12 (2010), 457-473.
doi: 10.1142/S0219199710003889. |
[10] |
S. Seyfaddini, Descent and $C^0$-rigidity of spectral invariants on monotone symplectic manifolds, J. Topol. Anal., 4 (2012), 481-498.
doi: 10.1142/S1793525312500215. |
[1] |
Liqun Qi, Shenglong Hu, Yanwei Xu. Spectral norm and nuclear norm of a third order tensor. Journal of Industrial and Management Optimization, 2022, 18 (2) : 1101-1113. doi: 10.3934/jimo.2021010 |
[2] |
Zhen-Zhen Tao, Bing Sun. Galerkin spectral method for elliptic optimal control problem with $L^2$-norm control constraint. Discrete and Continuous Dynamical Systems - B, 2021 doi: 10.3934/dcdsb.2021220 |
[3] |
Zongyuan Li, Weinan Wang. Norm inflation for the Boussinesq system. Discrete and Continuous Dynamical Systems - B, 2021, 26 (10) : 5449-5463. doi: 10.3934/dcdsb.2020353 |
[4] |
Zhen-Zhen Tao, Bing Sun. Error estimates for spectral approximation of flow optimal control problem with $ L^2 $-norm control constraint. Journal of Industrial and Management Optimization, 2022 doi: 10.3934/jimo.2022030 |
[5] |
Catalin Badea, Bernhard Beckermann, Michel Crouzeix. Intersections of several disks of the Riemann sphere as $K$-spectral sets. Communications on Pure and Applied Analysis, 2009, 8 (1) : 37-54. doi: 10.3934/cpaa.2009.8.37 |
[6] |
Braxton Osting, Jérôme Darbon, Stanley Osher. Statistical ranking using the $l^{1}$-norm on graphs. Inverse Problems and Imaging, 2013, 7 (3) : 907-926. doi: 10.3934/ipi.2013.7.907 |
[7] |
Karina Samvelyan, Frol Zapolsky. Rigidity of the ${{L}^{p}}$-norm of the Poisson bracket on surfaces. Electronic Research Announcements, 2017, 24: 28-37. doi: 10.3934/era.2017.24.004 |
[8] |
Juan H. Arredondo, Francisco J. Mendoza, Alfredo Reyes. On the norm continuity of the hk-fourier transform. Electronic Research Announcements, 2018, 25: 36-47. doi: 10.3934/era.2018.25.005 |
[9] |
Frédéric Bernicot, Vjekoslav Kovač. Sobolev norm estimates for a class of bilinear multipliers. Communications on Pure and Applied Analysis, 2014, 13 (3) : 1305-1315. doi: 10.3934/cpaa.2014.13.1305 |
[10] |
Nobu Kishimoto. A remark on norm inflation for nonlinear Schrödinger equations. Communications on Pure and Applied Analysis, 2019, 18 (3) : 1375-1402. doi: 10.3934/cpaa.2019067 |
[11] |
Duo Wang, Zheng-Fen Jin, Youlin Shang. A penalty decomposition method for nuclear norm minimization with l1 norm fidelity term. Evolution Equations and Control Theory, 2019, 8 (4) : 695-708. doi: 10.3934/eect.2019034 |
[12] |
Huiyuan Guo, Quan Yu, Xinzhen Zhang, Lulu Cheng. Low rank matrix minimization with a truncated difference of nuclear norm and Frobenius norm regularization. Journal of Industrial and Management Optimization, 2022 doi: 10.3934/jimo.2022045 |
[13] |
Fengmin Xu, Yanfei Wang. Recovery of seismic wavefields by an lq-norm constrained regularization method. Inverse Problems and Imaging, 2018, 12 (5) : 1157-1172. doi: 10.3934/ipi.2018048 |
[14] |
Wael Bahsoun, Benoît Saussol. Linear response in the intermittent family: Differentiation in a weighted $C^0$-norm. Discrete and Continuous Dynamical Systems, 2016, 36 (12) : 6657-6668. doi: 10.3934/dcds.2016089 |
[15] |
Ferenc Weisz. Dual spaces of mixed-norm martingale Hardy spaces. Communications on Pure and Applied Analysis, 2021, 20 (2) : 681-695. doi: 10.3934/cpaa.2020285 |
[16] |
Axel Grünrock, Sebastian Herr. The Fourier restriction norm method for the Zakharov-Kuznetsov equation. Discrete and Continuous Dynamical Systems, 2014, 34 (5) : 2061-2068. doi: 10.3934/dcds.2014.34.2061 |
[17] |
Donghui Yang, Jie Zhong. Optimal actuator location of the minimum norm controls for stochastic heat equations. Mathematical Control and Related Fields, 2018, 8 (3&4) : 1081-1095. doi: 10.3934/mcrf.2018046 |
[18] |
Donglei Du, Xiaoyue Jiang, Guochuan Zhang. Optimal preemptive online scheduling to minimize lp norm on two processors. Journal of Industrial and Management Optimization, 2005, 1 (3) : 345-351. doi: 10.3934/jimo.2005.1.345 |
[19] |
Pia Heins, Michael Moeller, Martin Burger. Locally sparse reconstruction using the $l^{1,\infty}$-norm. Inverse Problems and Imaging, 2015, 9 (4) : 1093-1137. doi: 10.3934/ipi.2015.9.1093 |
[20] |
Heeralal Janwa, Fernando L. Piñero. On parameters of subfield subcodes of extended norm-trace codes. Advances in Mathematics of Communications, 2017, 11 (2) : 379-388. doi: 10.3934/amc.2017032 |
2020 Impact Factor: 0.929
Tools
Metrics
Other articles
by authors
[Back to Top]