2014, 21: 132-136. doi: 10.3934/era.2014.21.132

An arithmetic ball quotient surface whose Albanese variety is not of CM type

1. 

Department of Mathematics, Duke University, Box 90320, Durham, NC 27708-0320, United States

Received  October 2013 Revised  May 2014 Published  September 2014

An example is given of a compact quotient of the unit ball in $\mathbb{C}^2$ by an arithmetic group acting freely such that the Albanese variety is not of CM type. Such examples do not exist for congruence subgroups.
Citation: Chad Schoen. An arithmetic ball quotient surface whose Albanese variety is not of CM type. Electronic Research Announcements, 2014, 21: 132-136. doi: 10.3934/era.2014.21.132
References:
[1]

T. Chinburg and M. Stover, Arizona winter school course lecture notes, 2012. Available from: http://swc.math.arizona.edu/aws/2012/index.html.

[2]

D. Cox, Primes of the Form $x^2+ny^2$, A Wiley-Interscience Publication, John Wiley & Sons, Inc., New York, 1989.

[3]

J. Cremona, Algorithms for Modular Elliptic Curves, Second edition, Cambridge University Press, Cambridge, 1997.

[4]

F. Diamond and J. Shurman, A First Course in Modular Forms, Graduate Texts in Mathematics, 228, Springer-Verlag, New York, 2005.

[5]

N. Elkies, The Klein Quartic in Number Theory, in The Eightfold Way, Math. Sci. Res. Inst. Publ., 35, Cambridge Univ. Press, Cambridge, 1999, 51-101.

[6]

R. Hartshorne, Algebraic Geometry, Graduate Texts in Mathematics, No. 52, Springer-Verlag, New York, 1977.

[7]

F. Hirzebruch, Arrangements of lines and algebraic surfaces, Arithmetic and Geometry, Vol. II, Progr. Math., 36, Birkhäuser, Boston, Mass., 1983, 113-140.

[8]

M. Inoue, Some new surfaces of general type, Tokyo J. Math., 17 (1994), 295-319. doi: 10.3836/tjm/1270127954.

[9]

M.-N. Ishida, The irregularities of Hirzebruch's examples of surfaces of general type with $c_1^2=3c_2$, Math. Ann., 262 (1983), 407-420. doi: 10.1007/BF01456018.

[10]

S. Lang, Abelain Varieties, Interscience Tracts in Pure and Applied Mathematics. No. 7, Interscience Publishers, Inc., New York, 1959.

[11]

R. Livné, On Certain Covers of the Universal Elliptic Curve, Ph.D. Thesis, Harvard University, 1981.

[12]

Y. Miyoaka, The maximal number of quotients singularities on surfaces with given numerical invariants, Math. Ann., 268 (1984), 159-171. doi: 10.1007/BF01456083.

[13]

K. Murty and D. Ramakrishnan, The Albanese of unitary Shimura varieties, in The Zeta Function of Picard Modular Surfaces (eds. R. Langlands and D. Ramakrishnan), Univ. Montréal, Montréal, 1992, 445-464.

[14]

J. D. Rogawski, Analytic expression for the number of points mod $p$, in The Zeta Function of Picard Modular Surfaces (eds. R. Langlands and D. Ramakrishnan), Univ. Montréal, Montréal, 1992, 65-109.

[15]

J. Silverman, The Arithmetic of Elliptic Curves, Graduate Texts in Mathematics, 106, Springer-Verlag, New York, 1986. doi: 10.1007/978-1-4757-1920-8.

[16]

J. Silverman, Advanced Topics in the Arithmetic of Elliptic Curves, Graduate Texts in Mathematics, 151, Springer-Verlag, New York, 1994. doi: 10.1007/978-1-4612-0851-8.

[17]

R. O. Wells, Differential Analysis on Complex Manifolds, Prentice-Hall Series in Modern Analysis, Prentice Hall, Inc., Englewood Cliffs, NJ, 1973.

[18]

T. Yamazaki and M. Yoshida, On Hirzebruch's examples of surfaces with $c_1^2=3c_2$, Math. Ann., 266 (1984), 421-431. doi: 10.1007/BF01458537.

[19]

S.-T. Yau, Calabi's conjecture and some new results in algebraic geometry, Proc. Natl. Acad. Sci. USA, 74 (1977), 1798-1799. doi: 10.1073/pnas.74.5.1798.

show all references

References:
[1]

T. Chinburg and M. Stover, Arizona winter school course lecture notes, 2012. Available from: http://swc.math.arizona.edu/aws/2012/index.html.

[2]

D. Cox, Primes of the Form $x^2+ny^2$, A Wiley-Interscience Publication, John Wiley & Sons, Inc., New York, 1989.

[3]

J. Cremona, Algorithms for Modular Elliptic Curves, Second edition, Cambridge University Press, Cambridge, 1997.

[4]

F. Diamond and J. Shurman, A First Course in Modular Forms, Graduate Texts in Mathematics, 228, Springer-Verlag, New York, 2005.

[5]

N. Elkies, The Klein Quartic in Number Theory, in The Eightfold Way, Math. Sci. Res. Inst. Publ., 35, Cambridge Univ. Press, Cambridge, 1999, 51-101.

[6]

R. Hartshorne, Algebraic Geometry, Graduate Texts in Mathematics, No. 52, Springer-Verlag, New York, 1977.

[7]

F. Hirzebruch, Arrangements of lines and algebraic surfaces, Arithmetic and Geometry, Vol. II, Progr. Math., 36, Birkhäuser, Boston, Mass., 1983, 113-140.

[8]

M. Inoue, Some new surfaces of general type, Tokyo J. Math., 17 (1994), 295-319. doi: 10.3836/tjm/1270127954.

[9]

M.-N. Ishida, The irregularities of Hirzebruch's examples of surfaces of general type with $c_1^2=3c_2$, Math. Ann., 262 (1983), 407-420. doi: 10.1007/BF01456018.

[10]

S. Lang, Abelain Varieties, Interscience Tracts in Pure and Applied Mathematics. No. 7, Interscience Publishers, Inc., New York, 1959.

[11]

R. Livné, On Certain Covers of the Universal Elliptic Curve, Ph.D. Thesis, Harvard University, 1981.

[12]

Y. Miyoaka, The maximal number of quotients singularities on surfaces with given numerical invariants, Math. Ann., 268 (1984), 159-171. doi: 10.1007/BF01456083.

[13]

K. Murty and D. Ramakrishnan, The Albanese of unitary Shimura varieties, in The Zeta Function of Picard Modular Surfaces (eds. R. Langlands and D. Ramakrishnan), Univ. Montréal, Montréal, 1992, 445-464.

[14]

J. D. Rogawski, Analytic expression for the number of points mod $p$, in The Zeta Function of Picard Modular Surfaces (eds. R. Langlands and D. Ramakrishnan), Univ. Montréal, Montréal, 1992, 65-109.

[15]

J. Silverman, The Arithmetic of Elliptic Curves, Graduate Texts in Mathematics, 106, Springer-Verlag, New York, 1986. doi: 10.1007/978-1-4757-1920-8.

[16]

J. Silverman, Advanced Topics in the Arithmetic of Elliptic Curves, Graduate Texts in Mathematics, 151, Springer-Verlag, New York, 1994. doi: 10.1007/978-1-4612-0851-8.

[17]

R. O. Wells, Differential Analysis on Complex Manifolds, Prentice-Hall Series in Modern Analysis, Prentice Hall, Inc., Englewood Cliffs, NJ, 1973.

[18]

T. Yamazaki and M. Yoshida, On Hirzebruch's examples of surfaces with $c_1^2=3c_2$, Math. Ann., 266 (1984), 421-431. doi: 10.1007/BF01458537.

[19]

S.-T. Yau, Calabi's conjecture and some new results in algebraic geometry, Proc. Natl. Acad. Sci. USA, 74 (1977), 1798-1799. doi: 10.1073/pnas.74.5.1798.

[1]

Joseph Nebus. The Dirichlet quotient of point vortex interactions on the surface of the sphere examined by Monte Carlo experiments. Discrete and Continuous Dynamical Systems - B, 2005, 5 (1) : 125-136. doi: 10.3934/dcdsb.2005.5.125

[2]

Jundong Zhou. A class of the non-degenerate complex quotient equations on compact Kähler manifolds. Communications on Pure and Applied Analysis, 2021, 20 (6) : 2361-2377. doi: 10.3934/cpaa.2021085

[3]

Kathryn Lindsey, Rodrigo Treviño. Infinite type flat surface models of ergodic systems. Discrete and Continuous Dynamical Systems, 2016, 36 (10) : 5509-5553. doi: 10.3934/dcds.2016043

[4]

Alfonso Castro, Shu-Zhi Song. Infinitely many radial solutions for a super-cubic Kirchhoff type problem in a ball. Discrete and Continuous Dynamical Systems - S, 2020, 13 (12) : 3347-3355. doi: 10.3934/dcdss.2020127

[5]

Ziyi Cai, Haiyang He. Asymptotic behavior of solutions for nonlinear integral equations with Hénon type on the unit Ball. Communications on Pure and Applied Analysis, 2020, 19 (9) : 4349-4362. doi: 10.3934/cpaa.2020196

[6]

Elisa Gorla, Maike Massierer. Index calculus in the trace zero variety. Advances in Mathematics of Communications, 2015, 9 (4) : 515-539. doi: 10.3934/amc.2015.9.515

[7]

Julii A. Dubinskii. Complex Neumann type boundary problem and decomposition of Lebesgue spaces. Discrete and Continuous Dynamical Systems, 2004, 10 (1&2) : 201-210. doi: 10.3934/dcds.2004.10.201

[8]

Michael J. Jacobson, Jr., Monireh Rezai Rad, Renate Scheidler. Comparison of scalar multiplication on real hyperelliptic curves. Advances in Mathematics of Communications, 2014, 8 (4) : 389-406. doi: 10.3934/amc.2014.8.389

[9]

Jan-Phillip Bäcker, Matthias Röger. Analysis and asymptotic reduction of a bulk-surface reaction-diffusion model of Gierer-Meinhardt type. Communications on Pure and Applied Analysis, 2022, 21 (4) : 1139-1155. doi: 10.3934/cpaa.2022013

[10]

Vincent Guyonne, Luca Lorenzi. Instability in a flame ball problem. Discrete and Continuous Dynamical Systems - B, 2007, 7 (2) : 315-350. doi: 10.3934/dcdsb.2007.7.315

[11]

Nicolas Boizot, Jean-Paul Gauthier. On the motion planning of the ball with a trailer. Mathematical Control and Related Fields, 2013, 3 (3) : 269-286. doi: 10.3934/mcrf.2013.3.269

[12]

Anna Maria Cherubini, Giorgio Metafune, Francesco Paparella. On the stopping time of a bouncing ball. Discrete and Continuous Dynamical Systems - B, 2008, 10 (1) : 43-72. doi: 10.3934/dcdsb.2008.10.43

[13]

Kwang Ho Kim, Junyop Choe, Song Yun Kim, Namsu Kim, Sekung Hong. Speeding up regular elliptic curve scalar multiplication without precomputation. Advances in Mathematics of Communications, 2020, 14 (4) : 703-726. doi: 10.3934/amc.2020090

[14]

Bertrand Lods. Variational characterizations of the effective multiplication factor of a nuclear reactor core. Kinetic and Related Models, 2009, 2 (2) : 307-331. doi: 10.3934/krm.2009.2.307

[15]

Ser Peow Tan, Yan Loi Wong and Ying Zhang. The SL(2, C) character variety of a one-holed torus. Electronic Research Announcements, 2005, 11: 103-110.

[16]

Christopher C. Tisdell. Reimagining multiplication as diagrammatic and dynamic concepts via cutting, pasting and rescaling actions. STEM Education, 2021, 1 (3) : 170-185. doi: 10.3934/steme.2021013

[17]

Gökhan Mutlu. On the quotient quantum graph with respect to the regular representation. Communications on Pure and Applied Analysis, 2021, 20 (2) : 885-902. doi: 10.3934/cpaa.2020295

[18]

Sheri M. Markose. Complex type 4 structure changing dynamics of digital agents: Nash equilibria of a game with arms race in innovations. Journal of Dynamics and Games, 2017, 4 (3) : 255-284. doi: 10.3934/jdg.2017015

[19]

B. Ambrosio, M. A. Aziz-Alaoui, V. L. E. Phan. Global attractor of complex networks of reaction-diffusion systems of Fitzhugh-Nagumo type. Discrete and Continuous Dynamical Systems - B, 2018, 23 (9) : 3787-3797. doi: 10.3934/dcdsb.2018077

[20]

Vesselin Petkov, Georgi Vodev. Localization of the interior transmission eigenvalues for a ball. Inverse Problems and Imaging, 2017, 11 (2) : 355-372. doi: 10.3934/ipi.2017017

2020 Impact Factor: 0.929

Metrics

  • PDF downloads (162)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]