2014, 21: 153-166. doi: 10.3934/era.2014.21.153

Canonical Cartan connections on maximally minimal generic submanifolds $\mathbf{M^5 \subset \mathbb{C}^4}$

1. 

Department of Pure Mathematics, University of Shahrekord, 88186-34141 Shahrekord, Iran

2. 

Département de Mathématiques d'Orsay, Bâtiment 425, Faculté des Sciences, F-91405 Orsay Cedex, France, France

Received  May 2014 Revised  September 2014 Published  November 2014

On a real analytic $5$-dimensional CR-generic submanifold $M^5 \subset \mathbb{C}^4$ of codimension $3$ hence of CR dimension $1$, which enjoys the generically satisfied nondegeneracy condition \begin{align*} {\bf 5} &= \text{rank}_\mathbb{C} \big( T^{1,0}M+T^{0,1}M + \big[T^{1,0}M,\,T^{0,1}M\big] \,+ \\&\qquad + \big[T^{1,0}M,\,[T^{1,0}M,T^{0,1}M]\big] + \big[T^{0,1}M,\,[T^{1,0}M,T^{0,1}M]\big] \big), \end{align*} a canonical Cartan connection is constructed after reduction to a certain partially explicit $\{ e\}$-structure of the concerned local biholomorphic equivalence problem.
Citation: Masoud Sabzevari, Joël Merker, Samuel Pocchiola. Canonical Cartan connections on maximally minimal generic submanifolds $\mathbf{M^5 \subset \mathbb{C}^4}$. Electronic Research Announcements, 2014, 21: 153-166. doi: 10.3934/era.2014.21.153
References:
[1]

V. Beloshapka, V. Ezhov and G. Schmalz, Canonical Cartan connection and holomorphic invariants on Engel CR manifolds, Russian J. Mathematical Physics, 14 (2007), 121-133. doi: 10.1134/S106192080702001X.  Google Scholar

[2]

É. Cartan, Sur la géométrie pseudo-conforme des hypersurfaces de l'espace de deux variables complexes, II, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (2), 1 (1932), 333-354.  Google Scholar

[3]

J. Merker, Rationality in differential algebraic geometry, to appear in Proceedings of the Abel Symposium 2013, Springer Verlag, arXiv:1405.7625, 2013, 47 pp. Google Scholar

[4]

J. Merker, S. Pocchiola and M. Sabzevari, Equivalences of $5$-dimensional CR manifolds, I: General introduction, overview of results, and nonlinear computational aspects,, , ().   Google Scholar

[5]

J. Merker, S. Pocchiola and M. Sabzevari, Equivalences of $5$-dimensional CR manifolds, II: General classes $\sfI$, $\sf{II}$, $\sf{III}_{\sf{1}}$, $\sf{III}_{\sf{2}}$, $\sf{IV}_{\sf{1}}$, $\sf{IV}_{\sf{2}}$,, , ().   Google Scholar

[6]

J. Merker and M. Sabzevari, Explicit expression of Cartan's connections for Levi-nondegenerate 3-manifolds in complex surfaces, and identification of the Heisenberg sphere, Cent. Eur. J. Math., 10 (2012), 1801-1835. doi: 10.2478/s11533-012-0052-4.  Google Scholar

[7]

J. Merker and M. Sabzevari, Cartan equivalences for $5$-dimensional CR-manifolds in $\mathbbC^4$ belonging to general class III,, , ().   Google Scholar

[8]

P. J. Olver, Equivalence, Invariants and Symmetry, Cambridge University Press, Cambridge, 1995. doi: 10.1017/CBO9780511609565.  Google Scholar

[9]

S. Sternberg, Lectures on Differential Geometry, Prentice-Hall, Inc., Englewood Cliffs, N. J., 1964.  Google Scholar

show all references

References:
[1]

V. Beloshapka, V. Ezhov and G. Schmalz, Canonical Cartan connection and holomorphic invariants on Engel CR manifolds, Russian J. Mathematical Physics, 14 (2007), 121-133. doi: 10.1134/S106192080702001X.  Google Scholar

[2]

É. Cartan, Sur la géométrie pseudo-conforme des hypersurfaces de l'espace de deux variables complexes, II, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (2), 1 (1932), 333-354.  Google Scholar

[3]

J. Merker, Rationality in differential algebraic geometry, to appear in Proceedings of the Abel Symposium 2013, Springer Verlag, arXiv:1405.7625, 2013, 47 pp. Google Scholar

[4]

J. Merker, S. Pocchiola and M. Sabzevari, Equivalences of $5$-dimensional CR manifolds, I: General introduction, overview of results, and nonlinear computational aspects,, , ().   Google Scholar

[5]

J. Merker, S. Pocchiola and M. Sabzevari, Equivalences of $5$-dimensional CR manifolds, II: General classes $\sfI$, $\sf{II}$, $\sf{III}_{\sf{1}}$, $\sf{III}_{\sf{2}}$, $\sf{IV}_{\sf{1}}$, $\sf{IV}_{\sf{2}}$,, , ().   Google Scholar

[6]

J. Merker and M. Sabzevari, Explicit expression of Cartan's connections for Levi-nondegenerate 3-manifolds in complex surfaces, and identification of the Heisenberg sphere, Cent. Eur. J. Math., 10 (2012), 1801-1835. doi: 10.2478/s11533-012-0052-4.  Google Scholar

[7]

J. Merker and M. Sabzevari, Cartan equivalences for $5$-dimensional CR-manifolds in $\mathbbC^4$ belonging to general class III,, , ().   Google Scholar

[8]

P. J. Olver, Equivalence, Invariants and Symmetry, Cambridge University Press, Cambridge, 1995. doi: 10.1017/CBO9780511609565.  Google Scholar

[9]

S. Sternberg, Lectures on Differential Geometry, Prentice-Hall, Inc., Englewood Cliffs, N. J., 1964.  Google Scholar

[1]

Franz W. Kamber and Peter W. Michor. Completing Lie algebra actions to Lie group actions. Electronic Research Announcements, 2004, 10: 1-10.

[2]

Pengliang Xu, Xiaomin Tang. Graded post-Lie algebra structures and homogeneous Rota-Baxter operators on the Schrödinger-Virasoro algebra. Electronic Research Archive, 2021, 29 (4) : 2771-2789. doi: 10.3934/era.2021013

[3]

Carlos Durán, Diego Otero. The projective Cartan-Klein geometry of the Helmholtz conditions. Journal of Geometric Mechanics, 2018, 10 (1) : 69-92. doi: 10.3934/jgm.2018003

[4]

Waldyr M. Oliva, Gláucio Terra. Improving E. Cartan considerations on the invariance of nonholonomic mechanics. Journal of Geometric Mechanics, 2019, 11 (3) : 439-446. doi: 10.3934/jgm.2019022

[5]

Boris Kalinin, Anatole Katok. Measure rigidity beyond uniform hyperbolicity: invariant measures for cartan actions on tori. Journal of Modern Dynamics, 2007, 1 (1) : 123-146. doi: 10.3934/jmd.2007.1.123

[6]

Robert I. McLachlan, Ander Murua. The Lie algebra of classical mechanics. Journal of Computational Dynamics, 2019, 6 (2) : 345-360. doi: 10.3934/jcd.2019017

[7]

Richard H. Cushman, Jędrzej Śniatycki. On Lie algebra actions. Discrete & Continuous Dynamical Systems - S, 2020, 13 (4) : 1115-1129. doi: 10.3934/dcdss.2020066

[8]

Boris Kalinin, Anatole Katok, Federico Rodriguez Hertz. Errata to "Measure rigidity beyond uniform hyperbolicity: Invariant measures for Cartan actions on tori" and "Uniqueness of large invariant measures for $\Zk$ actions with Cartan homotopy data". Journal of Modern Dynamics, 2010, 4 (1) : 207-209. doi: 10.3934/jmd.2010.4.207

[9]

Tracy L. Payne. Anosov automorphisms of nilpotent Lie algebras. Journal of Modern Dynamics, 2009, 3 (1) : 121-158. doi: 10.3934/jmd.2009.3.121

[10]

Javier Pérez Álvarez. Invariant structures on Lie groups. Journal of Geometric Mechanics, 2020, 12 (2) : 141-148. doi: 10.3934/jgm.2020007

[11]

Anatole Katok, Federico Rodriguez Hertz. Uniqueness of large invariant measures for $\mathbb{Z}^k$ actions with Cartan homotopy data. Journal of Modern Dynamics, 2007, 1 (2) : 287-300. doi: 10.3934/jmd.2007.1.287

[12]

Thierry Paul, David Sauzin. Normalization in Banach scale Lie algebras via mould calculus and applications. Discrete & Continuous Dynamical Systems, 2017, 37 (8) : 4461-4487. doi: 10.3934/dcds.2017191

[13]

Luca Capogna. Optimal regularity for quasilinear equations in stratified nilpotent Lie groups and applications. Electronic Research Announcements, 1996, 2: 60-68.

[14]

Gabriela P. Ovando. The geodesic flow on nilpotent Lie groups of steps two and three. Discrete & Continuous Dynamical Systems, 2022, 42 (1) : 327-352. doi: 10.3934/dcds.2021119

[15]

Katarzyna Grabowska, Marcin Zając. The Tulczyjew triple in mechanics on a Lie group. Journal of Geometric Mechanics, 2016, 8 (4) : 413-435. doi: 10.3934/jgm.2016014

[16]

Mohammad Shafiee. The 2-plectic structures induced by the Lie bialgebras. Journal of Geometric Mechanics, 2017, 9 (1) : 83-90. doi: 10.3934/jgm.2017003

[17]

Fang Li, Jie Pan. On inner Poisson structures of a quantum cluster algebra without coefficients. Electronic Research Archive, 2021, 29 (5) : 2959-2972. doi: 10.3934/era.2021021

[18]

Oǧul Esen, Hasan Gümral. Geometry of plasma dynamics II: Lie algebra of Hamiltonian vector fields. Journal of Geometric Mechanics, 2012, 4 (3) : 239-269. doi: 10.3934/jgm.2012.4.239

[19]

Giovanni De Matteis, Gianni Manno. Lie algebra symmetry analysis of the Helfrich and Willmore surface shape equations. Communications on Pure & Applied Analysis, 2014, 13 (1) : 453-481. doi: 10.3934/cpaa.2014.13.453

[20]

Rita Ferreira, Elvira Zappale. Bending-torsion moments in thin multi-structures in the context of nonlinear elasticity. Communications on Pure & Applied Analysis, 2020, 19 (3) : 1747-1793. doi: 10.3934/cpaa.2020072

2020 Impact Factor: 0.929

Metrics

  • PDF downloads (103)
  • HTML views (0)
  • Cited by (0)

[Back to Top]