-
Previous Article
Exponentially small asymptotic estimates for the splitting of separatrices to whiskered tori with quadratic and cubic frequencies
- ERA-MS Home
- This Volume
-
Next Article
The spectral gap of graphs and Steklov eigenvalues on surfaces
Remarks on 5-dimensional complete intersections
1. | Department of Mathematics, School of Science, Tianjin University. Weijin Road 92, Nankai District, Tianjin 300072, China |
References:
[1] |
P. Brückmann, A remark on moduli spaces of complete intersections, J. Reine Angew. Math., 476 (1996), 209-215.
doi: 10.1515/crll.1996.476.209. |
[2] |
P. Brückmann, A remark on moduli spaces of 4-dimensional complete intersections, J. Reine Angew. Math., 525 (2000), 213-217.
doi: 10.1515/crll.2000.068. |
[3] |
W. Ebeling, An example of two homeomorphic, nondiffeomorphic complete intersection surfaces, Invent. Math., 99 (1990), 651-654.
doi: 10.1007/BF01234435. |
[4] |
F. Fang, Topology of complete intersections, Comment. Math. Helv., 72 (1997), 466-480.
doi: 10.1007/s000140050028. |
[5] |
F. Fang and S. Klaus, Topological classification of 4-dimensional complete intersections, Manuscript Math., 90 (1996), 139-147.
doi: 10.1007/BF02568299. |
[6] |
F. Fang and J. Wang, Homeomorphism classification of complex projective complete intersections of dimensions 5, 6 and 7, Math. Z., 266 (2010), 719-746.
doi: 10.1007/s00209-009-0597-5. |
[7] |
M. Kreck, Surgery and duality, Ann. of Math. (2), 149 (1999), 707-754.
doi: 10.2307/121071. |
[8] |
A. S. Libgober and J. W. Wood, Differentiable structures on complete intersections. I, Topology, 21 (1982), 469-482.
doi: 10.1016/0040-9383(82)90024-6. |
[9] |
A. S. Libgober and J. W. Wood, Remarks on moduli spaces of complete intersections, in The Lefschetz centennial conference, Part I (Mexico City, 1984), Contemp. Math., 58, Amer. Math. Soc., Providence, RI, 1986, 183-194.
doi: 10.1090/conm/058.1/860413. |
[10] |
A. S. Libgober and J. W. Wood, Uniqueness of the complex structure on Kähler manifolds of certain homotopy types, J. Differential Geom., 32 (1990), 139-154. |
[11] |
C. Traving, Klassification vollständiger Durchschnitte, Diplomarbeit, University of Mainz, 1985. Available from: http://www.mfo.de/Staff/traving.pdf |
show all references
References:
[1] |
P. Brückmann, A remark on moduli spaces of complete intersections, J. Reine Angew. Math., 476 (1996), 209-215.
doi: 10.1515/crll.1996.476.209. |
[2] |
P. Brückmann, A remark on moduli spaces of 4-dimensional complete intersections, J. Reine Angew. Math., 525 (2000), 213-217.
doi: 10.1515/crll.2000.068. |
[3] |
W. Ebeling, An example of two homeomorphic, nondiffeomorphic complete intersection surfaces, Invent. Math., 99 (1990), 651-654.
doi: 10.1007/BF01234435. |
[4] |
F. Fang, Topology of complete intersections, Comment. Math. Helv., 72 (1997), 466-480.
doi: 10.1007/s000140050028. |
[5] |
F. Fang and S. Klaus, Topological classification of 4-dimensional complete intersections, Manuscript Math., 90 (1996), 139-147.
doi: 10.1007/BF02568299. |
[6] |
F. Fang and J. Wang, Homeomorphism classification of complex projective complete intersections of dimensions 5, 6 and 7, Math. Z., 266 (2010), 719-746.
doi: 10.1007/s00209-009-0597-5. |
[7] |
M. Kreck, Surgery and duality, Ann. of Math. (2), 149 (1999), 707-754.
doi: 10.2307/121071. |
[8] |
A. S. Libgober and J. W. Wood, Differentiable structures on complete intersections. I, Topology, 21 (1982), 469-482.
doi: 10.1016/0040-9383(82)90024-6. |
[9] |
A. S. Libgober and J. W. Wood, Remarks on moduli spaces of complete intersections, in The Lefschetz centennial conference, Part I (Mexico City, 1984), Contemp. Math., 58, Amer. Math. Soc., Providence, RI, 1986, 183-194.
doi: 10.1090/conm/058.1/860413. |
[10] |
A. S. Libgober and J. W. Wood, Uniqueness of the complex structure on Kähler manifolds of certain homotopy types, J. Differential Geom., 32 (1990), 139-154. |
[11] |
C. Traving, Klassification vollständiger Durchschnitte, Diplomarbeit, University of Mainz, 1985. Available from: http://www.mfo.de/Staff/traving.pdf |
[1] |
Alex Eskin, Maryam Mirzakhani. Counting closed geodesics in moduli space. Journal of Modern Dynamics, 2011, 5 (1) : 71-105. doi: 10.3934/jmd.2011.5.71 |
[2] |
Vianney Perchet, Marc Quincampoix. A differential game on Wasserstein space. Application to weak approachability with partial monitoring. Journal of Dynamics and Games, 2019, 6 (1) : 65-85. doi: 10.3934/jdg.2019005 |
[3] |
Corentin Boissy. Classification of Rauzy classes in the moduli space of Abelian and quadratic differentials. Discrete and Continuous Dynamical Systems, 2012, 32 (10) : 3433-3457. doi: 10.3934/dcds.2012.32.3433 |
[4] |
Alex Castro, Wyatt Howard, Corey Shanbrom. Complete spelling rules for the Monster tower over three-space. Journal of Geometric Mechanics, 2017, 9 (3) : 317-333. doi: 10.3934/jgm.2017013 |
[5] |
Christopher Kumar Anand. Unitons and their moduli. Electronic Research Announcements, 1996, 2: 7-16. |
[6] |
V. Balaji, P. Barik, D. S. Nagaraj. On degenerations of moduli of Hitchin pairs. Electronic Research Announcements, 2013, 20: 103-108. doi: 10.3934/era.2013.20.105 |
[7] |
Hicham Zmarrou, Ale Jan Homburg. Dynamics and bifurcations of random circle diffeomorphism. Discrete and Continuous Dynamical Systems - B, 2008, 10 (2&3, September) : 719-731. doi: 10.3934/dcdsb.2008.10.719 |
[8] |
Davi Obata. Symmetries of vector fields: The diffeomorphism centralizer. Discrete and Continuous Dynamical Systems, 2021, 41 (10) : 4943-4957. doi: 10.3934/dcds.2021063 |
[9] |
Sang-hyun Kim, Thomas Koberda. Integrability of moduli and regularity of denjoy counterexamples. Discrete and Continuous Dynamical Systems, 2020, 40 (10) : 6061-6088. doi: 10.3934/dcds.2020259 |
[10] |
Zhihong Xia. Homoclinic points and intersections of Lagrangian submanifold. Discrete and Continuous Dynamical Systems, 2000, 6 (1) : 243-253. doi: 10.3934/dcds.2000.6.243 |
[11] |
Cheng Cheng, Shaobo Gan, Yi Shi. A robustly transitive diffeomorphism of Kan's type. Discrete and Continuous Dynamical Systems, 2018, 38 (2) : 867-888. doi: 10.3934/dcds.2018037 |
[12] |
Christian Bonatti, Stanislav Minkov, Alexey Okunev, Ivan Shilin. Anosov diffeomorphism with a horseshoe that attracts almost any point. Discrete and Continuous Dynamical Systems, 2020, 40 (1) : 441-465. doi: 10.3934/dcds.2020017 |
[13] |
Christian Bonatti, Sylvain Crovisier and Amie Wilkinson. The centralizer of a $C^1$-generic diffeomorphism is trivial. Electronic Research Announcements, 2008, 15: 33-43. doi: 10.3934/era.2008.15.33 |
[14] |
Maria Carvalho, Alexander Lohse, Alexandre A. P. Rodrigues. Moduli of stability for heteroclinic cycles of periodic solutions. Discrete and Continuous Dynamical Systems, 2019, 39 (11) : 6541-6564. doi: 10.3934/dcds.2019284 |
[15] |
Michihiro Hirayama, Naoya Sumi. Hyperbolic measures with transverse intersections of stable and unstable manifolds. Discrete and Continuous Dynamical Systems, 2013, 33 (4) : 1451-1476. doi: 10.3934/dcds.2013.33.1451 |
[16] |
Françoise Pène. Self-intersections of trajectories of the Lorentz process. Discrete and Continuous Dynamical Systems, 2014, 34 (11) : 4781-4806. doi: 10.3934/dcds.2014.34.4781 |
[17] |
Michael Herty, J.-P. Lebacque, S. Moutari. A novel model for intersections of vehicular traffic flow. Networks and Heterogeneous Media, 2009, 4 (4) : 813-826. doi: 10.3934/nhm.2009.4.813 |
[18] |
Michael Herty, S. Moutari, M. Rascle. Optimization criteria for modelling intersections of vehicular traffic flow. Networks and Heterogeneous Media, 2006, 1 (2) : 275-294. doi: 10.3934/nhm.2006.1.275 |
[19] |
Wenxiong Chen, Congming Li. Harmonic maps on complete manifolds. Discrete and Continuous Dynamical Systems, 1999, 5 (4) : 799-804. doi: 10.3934/dcds.1999.5.799 |
[20] |
Paula Kemp. Fixed points and complete lattices. Conference Publications, 2007, 2007 (Special) : 568-572. doi: 10.3934/proc.2007.2007.568 |
2020 Impact Factor: 0.929
Tools
Metrics
Other articles
by authors
[Back to Top]