Citation: |
[1] |
A. Ancona, Principe de Harnack à la frontière et théorème de Fatou pour un opérateur elliptique dans un domaine lipschitzien, Ann. Inst. Fourier (Grenoble), 28 (1978), 169-213.doi: 10.5802/aif.720. |
[2] |
Z. Balogh and A. Volberg, Boundary Harnack principle for separated semihyperbolic repellers, harmonic measure applications, Rev. Mat. Iberoamericana, 12 (1996), 299-336.doi: 10.4171/RMI/200. |
[3] |
L. Caffarelli, E. Fabes, S. Mortola and S. Salsa, Boundary behavior of nonnegative solutions of elliptic operators in divergence form, Indiana Univ. Math. J., 30 (1981), 621-640.doi: 10.1512/iumj.1981.30.30049. |
[4] |
D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order, Reprint of the 1998 edition, Classics in Mathematics, Springer-Verlag, Berlin, 2001. |
[5] |
D. S. Jerison and C. E. Kenig, Boundary behavior of harmonic functions in nontangentially accessible domains, Adv. in Math., 46 (1982), 80-147.doi: 10.1016/0001-8708(82)90055-X. |
[6] |
N. V. Krylov, Boundedly inhomogeneous elliptic and parabolic equations in a domain, (Russian) Izv. Akad. Nauk SSSR Ser. Mat., 47 (1983), 75-108; translation in Math. USSR-Izv., 22 (1984), 67-98. |
[7] |
P. Li and S.-T. Yau, On the parabolic kernel of the Schrödinger operator, Acta Math., 156 (1986), 153-201.doi: 10.1007/BF02399203. |
[8] |
A. Logunov and E. Malinnikova, On ratios of harmonic functions, preprint, arXiv:1402.2888, 2014. |
[9] |
N. Nadirashvili, Harmonic functions with bounded number of nodal domains, Appl. Anal., 71 (1999), 187-196.doi: 10.1080/00036819908840712. |
[10] |
I. Popovici and A. Volberg, Boundary Harnack principle for Denjoy domains, Complex Variables Theory Appl., 37 (1998), 471-490.doi: 10.1080/17476939808815145. |
[11] |
L. Silvestre and B. Sirakov, Boundary regularity for viscosity solutions of fully nonlinear elliptic equations, preprint, arXiv:1306.6672, 2013. |
[12] |
J. M. G. Wu, Comparisons of kernel functions, boundary Harnack principle and relative Fatou theorem on Lipschitz domains, Ann. Inst. Fourier (Grenoble), 28 (1978), 147-167.doi: 10.5802/aif.719. |