-
Previous Article
Pseudo-Anosov eigenfoliations on Panov planes
- ERA-MS Home
- This Volume
-
Next Article
From local to global equilibrium states: Thermodynamic formalism via an inducing scheme
Compactly supported Hamiltonian loops with a non-zero Calabi invariant
1. | School of Mathematical Sciences, Tel Aviv University, Tel Aviv 6997801, Israel |
References:
[1] |
A. Cannas da Silva, Symplectic Toric Manifolds, 2001. Available from: http://www.math.ist.utl.pt/~acannas/Books/toric.pdf. |
[2] |
Y. Karshon, Periodic Hamiltonian flows on four-dimensional manifolds, Memoirs Amer. Math. Soc., 141 (1999).
doi: 10.1090/memo/0672. |
[3] |
D. McDuff, Loops in the Hamiltonian group: A survey, in Symplectic Topology and Measure Preserving Dynamical Systems, Contemp. Math., 512, Amer. Math. Soc., Providence, RI, 2010, 127-148.
doi: 10.1090/conm/512/10061. |
[4] |
D. McDuff and D. Salamon, Introduction to Symplectic Topology, Second edition, Oxford Mathematical Monographs, The Clarendon Press, Oxford University Press, New York, 1998. |
[5] |
L. Polterovich, The Geometry of the Group of Symplectic Diffeomorphisms, Lectures in Mathematics ETH Zürich, Birkhäuser Verlag, Basel, 2001.
doi: 10.1007/978-3-0348-8299-6. |
[6] |
L. Polterovich, Hamiltonian loops and Arnold's principle, in Topics in Singularity Theory, Amer. Math. Soc. Transl. Ser 2, 180, Amer. Math. Soc., Providence, RI, 1997, 181-187. |
[7] |
S. Seyfaddini, Descent and $C^0$-rigidity of spectral invariants on monotone symplectic manifolds, J. Top. Anal., 4 (2012), 481-498.
doi: 10.1142/S1793525312500215. |
show all references
References:
[1] |
A. Cannas da Silva, Symplectic Toric Manifolds, 2001. Available from: http://www.math.ist.utl.pt/~acannas/Books/toric.pdf. |
[2] |
Y. Karshon, Periodic Hamiltonian flows on four-dimensional manifolds, Memoirs Amer. Math. Soc., 141 (1999).
doi: 10.1090/memo/0672. |
[3] |
D. McDuff, Loops in the Hamiltonian group: A survey, in Symplectic Topology and Measure Preserving Dynamical Systems, Contemp. Math., 512, Amer. Math. Soc., Providence, RI, 2010, 127-148.
doi: 10.1090/conm/512/10061. |
[4] |
D. McDuff and D. Salamon, Introduction to Symplectic Topology, Second edition, Oxford Mathematical Monographs, The Clarendon Press, Oxford University Press, New York, 1998. |
[5] |
L. Polterovich, The Geometry of the Group of Symplectic Diffeomorphisms, Lectures in Mathematics ETH Zürich, Birkhäuser Verlag, Basel, 2001.
doi: 10.1007/978-3-0348-8299-6. |
[6] |
L. Polterovich, Hamiltonian loops and Arnold's principle, in Topics in Singularity Theory, Amer. Math. Soc. Transl. Ser 2, 180, Amer. Math. Soc., Providence, RI, 1997, 181-187. |
[7] |
S. Seyfaddini, Descent and $C^0$-rigidity of spectral invariants on monotone symplectic manifolds, J. Top. Anal., 4 (2012), 481-498.
doi: 10.1142/S1793525312500215. |
[1] |
Fiammetta Battaglia and Elisa Prato. Nonrational, nonsimple convex polytopes in symplectic geometry. Electronic Research Announcements, 2002, 8: 29-34. |
[2] |
Carlos Durán, Diego Otero. The projective symplectic geometry of higher order variational problems: Minimality conditions. Journal of Geometric Mechanics, 2016, 8 (3) : 305-322. doi: 10.3934/jgm.2016009 |
[3] |
Santiago Cañez. Double groupoids and the symplectic category. Journal of Geometric Mechanics, 2018, 10 (2) : 217-250. doi: 10.3934/jgm.2018009 |
[4] |
Mads R. Bisgaard. Mather theory and symplectic rigidity. Journal of Modern Dynamics, 2019, 15: 165-207. doi: 10.3934/jmd.2019018 |
[5] |
Chungen Liu, Qi Wang. Symmetrical symplectic capacity with applications. Discrete and Continuous Dynamical Systems, 2012, 32 (6) : 2253-2270. doi: 10.3934/dcds.2012.32.2253 |
[6] |
Alex L Castro, Wyatt Howard, Corey Shanbrom. Bridges between subriemannian geometry and algebraic geometry: Now and then. Conference Publications, 2015, 2015 (special) : 239-247. doi: 10.3934/proc.2015.0239 |
[7] |
P. Balseiro, M. de León, Juan Carlos Marrero, D. Martín de Diego. The ubiquity of the symplectic Hamiltonian equations in mechanics. Journal of Geometric Mechanics, 2009, 1 (1) : 1-34. doi: 10.3934/jgm.2009.1.1 |
[8] |
Björn Gebhard. A note concerning a property of symplectic matrices. Communications on Pure and Applied Analysis, 2018, 17 (5) : 2135-2137. doi: 10.3934/cpaa.2018101 |
[9] |
Joshua Cape, Hans-Christian Herbig, Christopher Seaton. Symplectic reduction at zero angular momentum. Journal of Geometric Mechanics, 2016, 8 (1) : 13-34. doi: 10.3934/jgm.2016.8.13 |
[10] |
Lijin Wang, Jialin Hong. Generating functions for stochastic symplectic methods. Discrete and Continuous Dynamical Systems, 2014, 34 (3) : 1211-1228. doi: 10.3934/dcds.2014.34.1211 |
[11] |
Joachim Escher, Boris Kolev, Marcus Wunsch. The geometry of a vorticity model equation. Communications on Pure and Applied Analysis, 2012, 11 (4) : 1407-1419. doi: 10.3934/cpaa.2012.11.1407 |
[12] |
George W. Patrick. The geometry of convergence in numerical analysis. Journal of Computational Dynamics, 2021, 8 (1) : 33-58. doi: 10.3934/jcd.2021003 |
[13] |
Janina Kotus, Mariusz Urbański. The dynamics and geometry of the Fatou functions. Discrete and Continuous Dynamical Systems, 2005, 13 (2) : 291-338. doi: 10.3934/dcds.2005.13.291 |
[14] |
Katarzyna Grabowska, Paweƚ Urbański. Geometry of Routh reduction. Journal of Geometric Mechanics, 2019, 11 (1) : 23-44. doi: 10.3934/jgm.2019002 |
[15] |
Len G. Margolin, Roy S. Baty. Conservation laws in discrete geometry. Journal of Geometric Mechanics, 2019, 11 (2) : 187-203. doi: 10.3934/jgm.2019010 |
[16] |
Jean-Marc Couveignes, Reynald Lercier. The geometry of some parameterizations and encodings. Advances in Mathematics of Communications, 2014, 8 (4) : 437-458. doi: 10.3934/amc.2014.8.437 |
[17] |
Yong Lin, Gábor Lippner, Dan Mangoubi, Shing-Tung Yau. Nodal geometry of graphs on surfaces. Discrete and Continuous Dynamical Systems, 2010, 28 (3) : 1291-1298. doi: 10.3934/dcds.2010.28.1291 |
[18] |
Michael Entov, Leonid Polterovich, Daniel Rosen. Poisson brackets, quasi-states and symplectic integrators. Discrete and Continuous Dynamical Systems, 2010, 28 (4) : 1455-1468. doi: 10.3934/dcds.2010.28.1455 |
[19] |
George Papadopoulos, Holger R. Dullin. Semi-global symplectic invariants of the Euler top. Journal of Geometric Mechanics, 2013, 5 (2) : 215-232. doi: 10.3934/jgm.2013.5.215 |
[20] |
Per Christian Moan, Jitse Niesen. On an asymptotic method for computing the modified energy for symplectic methods. Discrete and Continuous Dynamical Systems, 2014, 34 (3) : 1105-1120. doi: 10.3934/dcds.2014.34.1105 |
2020 Impact Factor: 0.929
Tools
Metrics
Other articles
by authors
[Back to Top]