-
Previous Article
On Helly's theorem in geodesic spaces
- ERA-MS Home
- This Volume
-
Next Article
Compactly supported Hamiltonian loops with a non-zero Calabi invariant
Pseudo-Anosov eigenfoliations on Panov planes
1. | Clemson University, E-1b Martin Hall, Clemson, SC 29634, United States |
2. | Clemson University, O-229 Martin Hall, Clemson, SC 29634, United States |
Possible strategies to generalize our main dynamical result to larger sets of directions are discussed. Particularly we include recent results of Frączek and Ulcigrai [17, 18] and Delecroix [6] for the wind-tree model. Implicitly Panov planes appear in Frączek and Schmoll [15], where the authors consider Eaton Lens distributions.
References:
[1] |
A. Avila and P. Hubert, Recurrence for the wind-tree model, preprint, 2011/2012. |
[2] |
P. Boyland, Transitivity of surface dynamics lifted to abelian covers, Ergodic Theory and Dynamical Systems, 29 (2009), 1417-1449.
doi: 10.1017/S0143385708000783. |
[3] |
K. Calta, Veech surfaces and complete periodicity in genus two, J. Amer. Math. Soc., 17 (2004), 871-908.
doi: 10.1090/S0894-0347-04-00461-8. |
[4] |
J. Chaika and A. Eskin, Every flat surface is Birkhoff and Osceledets generic in almost every direction, arXiv:1305.1104, (2013). |
[5] |
J.-P. Conze and E. Gutkin, On recurrence and ergodicity for geodesic flows on non-compact periodic polygonal surfaces, Ergodic Theory Dyn. Systems, 32 (2012), 491-515.
doi: 10.1017/S0143385711001003. |
[6] |
V. Delecroix, Divergent directions in some periodic wind-tree models, Journal of Modern Dynamics, 7 (2013), 1-29.
doi: 10.3934/jmd.2013.7.1. |
[7] |
V. Delecroix, P. Hubert and S. Lelièvre, Diffusion for the periodic wind-tree model, preprint, arXiv:1107.1810v3, Annales Scientifiques de l'Ecole Normale Supérieure, 47 (2014), 28 pp. |
[8] |
P. Ehrenfest and T. Ehrenfest, The Conceptual Foundations of the Statistical Approach in Mechanics, Translated from the German by Michael J. Moravcsik, Reprint of the 1959 English edition, Dover Publications, Inc., New York, 1990. |
[9] |
A. Eskin and M. Mirzakhani, Invariant and stationary measures for the $\slr$ action on moduli space,, \arXiv{1302.3320}., ().
|
[10] |
A. Eskin, M. Kontsevich and A. Zorich, Sum of Lyapunov exponents of the Hodge bundle with respect to the Teichmüller geodesic flow, Publications Mathématiques de l'IHÉS, (2013), 1-127, arXiv:1112.5872. |
[11] |
B. Farb and D. Margalit, A Primer on Mapping Class Groups, Princeton Mathematical Series, 49, Princeton University Press, Princeton, NJ, 2012. |
[12] |
A. Fathi, F. Laudenbach and V. Poénaru, Thurston's Work on Surfaces, Translation from the 1979 French original by Djun M. Kim and Dan Margalit, Mathematical Notes, 48, Princeton University Press, Princeton, NJ, 2012. |
[13] |
S. Ferenczi and L. Q. Zamboni, Structure of K-interval-exchange transformations: Induction, trajectories, and distance theorems, J. Anal. Math., 112 (2010), 289-328.
doi: 10.1007/s11854-010-0031-2. |
[14] |
S. Ferenczi and L. Q. Zamboni, Eigenvalues and simplicity of interval-exchange transformations, Ann. Sci. Éc. Norm. Sup. (4), 44 (2011), 361-392. |
[15] |
K. Frączek and M. Schmoll, Directional localization of light rays in a periodic array of retro-reflector lenses,, to appear in \emph{Nonlinearity}., ().
|
[16] |
K. Frączek and M. Schmoll, Dynamics on quadratic differentials in the determinant locus,, in preparation., ().
|
[17] |
K. Frączek and C. Ulcigrai, Non-ergodic $\Z$-periodic billiards and infinite translation surfaces,, to appear in \emph{Inventiones Math.}, ().
|
[18] |
K. Frączek and C. Ulcigrai, Ergodic directions for billiards in a strip with periodically located obstacles,, to appear in \emph{Communications in Mathematical Physics}, ().
|
[19] |
J. Grivaux and P. Hubert, Loci in strata of meromorphic differentials with fully degenerate Lyapunov spectrum,, \arXiv{1307.3481v1}., ().
|
[20] |
E. Gutkin and C. Judge, Affine mappings of translation surfaces: Geometry and arithmetic, Duke Math. J., 103 (2000), 191-213.
doi: 10.1215/S0012-7094-00-10321-3. |
[21] |
J. Hardy and J. Weber, Diffusion in a periodic wind-tree model, J. Math. Phys., 21 (1980), 1802-1808.
doi: 10.1063/1.524633. |
[22] |
W. P. Hooper, The invariant measures of some infinite interval exchange maps,, \arXiv{1005.1902}., ().
|
[23] |
W. P. Hooper and B. Weiss, Generalized staircases: Recurrence and symmetry,, \arXiv{0905.3736v1}., ().
|
[24] | |
[25] |
P. Hubert, S. Lelièvre and S. Troubetzkoy, The Ehrenfest wind-tree model: Periodic directions, recurrence, diffusion, J. Reine Angew. Math., 656 (2011), 223-244.
doi: 10.1515/CRELLE.2011.052. |
[26] |
P. Hubert and B. Weiss, Ergodicity for infinite periodic translation surfaces, Compos. Math., 149 (2013), 1364-1380.
doi: 10.1112/S0010437X12000887. |
[27] |
C. Johnson and M. Schmoll, Hyperelliptic translation surfaces and folded tori, Topology and its Applications, 161 (2014), 73-94.
doi: 10.1016/j.topol.2013.09.010. |
[28] |
C. Johnson and M. Schmoll, Dynamics on Panov planes,, in final preparation., ().
|
[29] |
H. Masur, Hausdorff dimension of the set of nonergodic foliations of a quadratic differential, Duke Math. J., 66 (1992), 387-442.
doi: 10.1215/S0012-7094-92-06613-0. |
[30] |
H. Masur and S. Tabachnikov, Rational billiards and flat structures, in Handbook of Dynamical Systems, Vol. 1A, North-Holland, Amsterdam, 2002, 1015-1089.
doi: 10.1016/S1874-575X(02)80015-7. |
[31] |
C. T. McMullen, Billiards and Teichmüller curves on Hilbert modular surfaces, J. Amer. Math. Soc., 16 (2003), 857-885 (electronic).
doi: 10.1090/S0894-0347-03-00432-6. |
[32] |
C. T. McMullen, Prym varieties and Teichmüller curves, Duke Math. J., 133 (2006), 569-590.
doi: 10.1215/S0012-7094-06-13335-5. |
[33] |
D. Panov, Foliations with unbounded deviation on $\mathbbT^2$, J. Mod. Dyn., 3 (2009), 589-594.
doi: 10.3934/jmd.2009.3.589. |
[34] |
M. Pollicott and R. Sharp, Pseudo-Anosov foliations on periodic surfaces, Topology Appl., 154 (2007), 2365-2375.
doi: 10.1016/j.topol.2007.01.021. |
[35] |
W. Thurston, On the geometry and dynamics of diffeomorphisms of surfaces, Bull. Amer. Math. Soc. (N.S.), 19 (1988), 417-431.
doi: 10.1090/S0273-0979-1988-15685-6. |
[36] |
S. Vasilyev, Genus two Veech Surfaces Arising from General Quadratic Differentials, Ph.D. Thesis, The University of Chicago,, 2005. |
[37] |
W. Veech, Teichmüller curves in the moduli space, Eisenstein series and an application to triangular billiards, Invent. Math., 97 (1989), 533-683.
doi: 10.1007/BF01388890. |
[38] |
A. Zorich, Flat surfaces, in Frontiers in Number Theory, Physics, and Geometry. I, Springer, Berlin, 2006, 437-583.
doi: 10.1007/978-3-540-31347-2_13. |
show all references
References:
[1] |
A. Avila and P. Hubert, Recurrence for the wind-tree model, preprint, 2011/2012. |
[2] |
P. Boyland, Transitivity of surface dynamics lifted to abelian covers, Ergodic Theory and Dynamical Systems, 29 (2009), 1417-1449.
doi: 10.1017/S0143385708000783. |
[3] |
K. Calta, Veech surfaces and complete periodicity in genus two, J. Amer. Math. Soc., 17 (2004), 871-908.
doi: 10.1090/S0894-0347-04-00461-8. |
[4] |
J. Chaika and A. Eskin, Every flat surface is Birkhoff and Osceledets generic in almost every direction, arXiv:1305.1104, (2013). |
[5] |
J.-P. Conze and E. Gutkin, On recurrence and ergodicity for geodesic flows on non-compact periodic polygonal surfaces, Ergodic Theory Dyn. Systems, 32 (2012), 491-515.
doi: 10.1017/S0143385711001003. |
[6] |
V. Delecroix, Divergent directions in some periodic wind-tree models, Journal of Modern Dynamics, 7 (2013), 1-29.
doi: 10.3934/jmd.2013.7.1. |
[7] |
V. Delecroix, P. Hubert and S. Lelièvre, Diffusion for the periodic wind-tree model, preprint, arXiv:1107.1810v3, Annales Scientifiques de l'Ecole Normale Supérieure, 47 (2014), 28 pp. |
[8] |
P. Ehrenfest and T. Ehrenfest, The Conceptual Foundations of the Statistical Approach in Mechanics, Translated from the German by Michael J. Moravcsik, Reprint of the 1959 English edition, Dover Publications, Inc., New York, 1990. |
[9] |
A. Eskin and M. Mirzakhani, Invariant and stationary measures for the $\slr$ action on moduli space,, \arXiv{1302.3320}., ().
|
[10] |
A. Eskin, M. Kontsevich and A. Zorich, Sum of Lyapunov exponents of the Hodge bundle with respect to the Teichmüller geodesic flow, Publications Mathématiques de l'IHÉS, (2013), 1-127, arXiv:1112.5872. |
[11] |
B. Farb and D. Margalit, A Primer on Mapping Class Groups, Princeton Mathematical Series, 49, Princeton University Press, Princeton, NJ, 2012. |
[12] |
A. Fathi, F. Laudenbach and V. Poénaru, Thurston's Work on Surfaces, Translation from the 1979 French original by Djun M. Kim and Dan Margalit, Mathematical Notes, 48, Princeton University Press, Princeton, NJ, 2012. |
[13] |
S. Ferenczi and L. Q. Zamboni, Structure of K-interval-exchange transformations: Induction, trajectories, and distance theorems, J. Anal. Math., 112 (2010), 289-328.
doi: 10.1007/s11854-010-0031-2. |
[14] |
S. Ferenczi and L. Q. Zamboni, Eigenvalues and simplicity of interval-exchange transformations, Ann. Sci. Éc. Norm. Sup. (4), 44 (2011), 361-392. |
[15] |
K. Frączek and M. Schmoll, Directional localization of light rays in a periodic array of retro-reflector lenses,, to appear in \emph{Nonlinearity}., ().
|
[16] |
K. Frączek and M. Schmoll, Dynamics on quadratic differentials in the determinant locus,, in preparation., ().
|
[17] |
K. Frączek and C. Ulcigrai, Non-ergodic $\Z$-periodic billiards and infinite translation surfaces,, to appear in \emph{Inventiones Math.}, ().
|
[18] |
K. Frączek and C. Ulcigrai, Ergodic directions for billiards in a strip with periodically located obstacles,, to appear in \emph{Communications in Mathematical Physics}, ().
|
[19] |
J. Grivaux and P. Hubert, Loci in strata of meromorphic differentials with fully degenerate Lyapunov spectrum,, \arXiv{1307.3481v1}., ().
|
[20] |
E. Gutkin and C. Judge, Affine mappings of translation surfaces: Geometry and arithmetic, Duke Math. J., 103 (2000), 191-213.
doi: 10.1215/S0012-7094-00-10321-3. |
[21] |
J. Hardy and J. Weber, Diffusion in a periodic wind-tree model, J. Math. Phys., 21 (1980), 1802-1808.
doi: 10.1063/1.524633. |
[22] |
W. P. Hooper, The invariant measures of some infinite interval exchange maps,, \arXiv{1005.1902}., ().
|
[23] |
W. P. Hooper and B. Weiss, Generalized staircases: Recurrence and symmetry,, \arXiv{0905.3736v1}., ().
|
[24] | |
[25] |
P. Hubert, S. Lelièvre and S. Troubetzkoy, The Ehrenfest wind-tree model: Periodic directions, recurrence, diffusion, J. Reine Angew. Math., 656 (2011), 223-244.
doi: 10.1515/CRELLE.2011.052. |
[26] |
P. Hubert and B. Weiss, Ergodicity for infinite periodic translation surfaces, Compos. Math., 149 (2013), 1364-1380.
doi: 10.1112/S0010437X12000887. |
[27] |
C. Johnson and M. Schmoll, Hyperelliptic translation surfaces and folded tori, Topology and its Applications, 161 (2014), 73-94.
doi: 10.1016/j.topol.2013.09.010. |
[28] |
C. Johnson and M. Schmoll, Dynamics on Panov planes,, in final preparation., ().
|
[29] |
H. Masur, Hausdorff dimension of the set of nonergodic foliations of a quadratic differential, Duke Math. J., 66 (1992), 387-442.
doi: 10.1215/S0012-7094-92-06613-0. |
[30] |
H. Masur and S. Tabachnikov, Rational billiards and flat structures, in Handbook of Dynamical Systems, Vol. 1A, North-Holland, Amsterdam, 2002, 1015-1089.
doi: 10.1016/S1874-575X(02)80015-7. |
[31] |
C. T. McMullen, Billiards and Teichmüller curves on Hilbert modular surfaces, J. Amer. Math. Soc., 16 (2003), 857-885 (electronic).
doi: 10.1090/S0894-0347-03-00432-6. |
[32] |
C. T. McMullen, Prym varieties and Teichmüller curves, Duke Math. J., 133 (2006), 569-590.
doi: 10.1215/S0012-7094-06-13335-5. |
[33] |
D. Panov, Foliations with unbounded deviation on $\mathbbT^2$, J. Mod. Dyn., 3 (2009), 589-594.
doi: 10.3934/jmd.2009.3.589. |
[34] |
M. Pollicott and R. Sharp, Pseudo-Anosov foliations on periodic surfaces, Topology Appl., 154 (2007), 2365-2375.
doi: 10.1016/j.topol.2007.01.021. |
[35] |
W. Thurston, On the geometry and dynamics of diffeomorphisms of surfaces, Bull. Amer. Math. Soc. (N.S.), 19 (1988), 417-431.
doi: 10.1090/S0273-0979-1988-15685-6. |
[36] |
S. Vasilyev, Genus two Veech Surfaces Arising from General Quadratic Differentials, Ph.D. Thesis, The University of Chicago,, 2005. |
[37] |
W. Veech, Teichmüller curves in the moduli space, Eisenstein series and an application to triangular billiards, Invent. Math., 97 (1989), 533-683.
doi: 10.1007/BF01388890. |
[38] |
A. Zorich, Flat surfaces, in Frontiers in Number Theory, Physics, and Geometry. I, Springer, Berlin, 2006, 437-583.
doi: 10.1007/978-3-540-31347-2_13. |
[1] |
Kariane Calta, Thomas A. Schmidt. Infinitely many lattice surfaces with special pseudo-Anosov maps. Journal of Modern Dynamics, 2013, 7 (2) : 239-254. doi: 10.3934/jmd.2013.7.239 |
[2] |
S. Öykü Yurttaş. Dynnikov and train track transition matrices of pseudo-Anosov braids. Discrete and Continuous Dynamical Systems, 2016, 36 (1) : 541-570. doi: 10.3934/dcds.2016.36.541 |
[3] |
Hieu Trung Do, Thomas A. Schmidt. New infinite families of pseudo-Anosov maps with vanishing Sah-Arnoux-Fathi invariant. Journal of Modern Dynamics, 2016, 10: 541-561. doi: 10.3934/jmd.2016.10.541 |
[4] |
Juan Alonso, Nancy Guelman, Juliana Xavier. Actions of solvable Baumslag-Solitar groups on surfaces with (pseudo)-Anosov elements. Discrete and Continuous Dynamical Systems, 2015, 35 (5) : 1817-1827. doi: 10.3934/dcds.2015.35.1817 |
[5] |
Todd A. Drumm and William M. Goldman. Crooked planes. Electronic Research Announcements, 1995, 1: 10-17. |
[6] |
João P. Almeida, Albert M. Fisher, Alberto Adrego Pinto, David A. Rand. Anosov diffeomorphisms. Conference Publications, 2013, 2013 (special) : 837-845. doi: 10.3934/proc.2013.2013.837 |
[7] |
Osama Khalil. Geodesic planes in geometrically finite manifolds. Discrete and Continuous Dynamical Systems, 2019, 39 (2) : 881-903. doi: 10.3934/dcds.2019037 |
[8] |
Dubi Kelmer. Quantum ergodicity for products of hyperbolic planes. Journal of Modern Dynamics, 2008, 2 (2) : 287-313. doi: 10.3934/jmd.2008.2.287 |
[9] |
Ivan Landjev. On blocking sets in projective Hjelmslev planes. Advances in Mathematics of Communications, 2007, 1 (1) : 65-81. doi: 10.3934/amc.2007.1.65 |
[10] |
Meera G. Mainkar, Cynthia E. Will. Examples of Anosov Lie algebras. Discrete and Continuous Dynamical Systems, 2007, 18 (1) : 39-52. doi: 10.3934/dcds.2007.18.39 |
[11] |
J. D. Key, T. P. McDonough, V. C. Mavron. Codes from hall planes of odd order. Advances in Mathematics of Communications, 2017, 11 (1) : 179-185. doi: 10.3934/amc.2017011 |
[12] |
Osama Khalil. Geodesic planes in geometrically finite manifolds-corrigendum. Discrete and Continuous Dynamical Systems, 2022, 42 (5) : 2101-2102. doi: 10.3934/dcds.2021185 |
[13] |
Dominic Veconi. Equilibrium states of almost Anosov diffeomorphisms. Discrete and Continuous Dynamical Systems, 2020, 40 (2) : 767-780. doi: 10.3934/dcds.2020061 |
[14] |
Tracy L. Payne. Anosov automorphisms of nilpotent Lie algebras. Journal of Modern Dynamics, 2009, 3 (1) : 121-158. doi: 10.3934/jmd.2009.3.121 |
[15] |
Gareth Ainsworth. The magnetic ray transform on Anosov surfaces. Discrete and Continuous Dynamical Systems, 2015, 35 (5) : 1801-1816. doi: 10.3934/dcds.2015.35.1801 |
[16] |
Yong Fang. Thermodynamic invariants of Anosov flows and rigidity. Discrete and Continuous Dynamical Systems, 2009, 24 (4) : 1185-1204. doi: 10.3934/dcds.2009.24.1185 |
[17] |
Meixia Dou. A direct method of moving planes for fractional Laplacian equations in the unit ball. Communications on Pure and Applied Analysis, 2016, 15 (5) : 1797-1807. doi: 10.3934/cpaa.2016015 |
[18] |
Miaomiao Cai, Li Ma. Moving planes for nonlinear fractional Laplacian equation with negative powers. Discrete and Continuous Dynamical Systems, 2018, 38 (9) : 4603-4615. doi: 10.3934/dcds.2018201 |
[19] |
Baiyu Liu. Direct method of moving planes for logarithmic Laplacian system in bounded domains. Discrete and Continuous Dynamical Systems, 2018, 38 (10) : 5339-5349. doi: 10.3934/dcds.2018235 |
[20] |
Pengyan Wang, Pengcheng Niu. A direct method of moving planes for a fully nonlinear nonlocal system. Communications on Pure and Applied Analysis, 2017, 16 (5) : 1707-1718. doi: 10.3934/cpaa.2017082 |
2020 Impact Factor: 0.929
Tools
Metrics
Other articles
by authors
[Back to Top]