-
Previous Article
Asymptotic limit of a Navier-Stokes-Korteweg system with density-dependent viscosity
- ERA-MS Home
- This Volume
-
Next Article
The approximate Loebl-Komlós-Sós conjecture and embedding trees in sparse graphs
Smoothing 3-dimensional polyhedral spaces
1. | Steklov Institute, St. Petersburg, Russian Federation |
2. | Institut für Mathematik, Friedrich-Schiller-Universität Jena, Germany |
3. | Mathematics Department, Pennsylvania State University, United States |
4. | National Research University, Higher School of Economics, Moscow, Russian Federation |
References:
[1] |
C. Böhm and B. Wilking, Manifolds with positive curvature operators are space forms, Ann. of Math. (2), 167 (2008), 1079-1097.
doi: 10.4007/annals.2008.167.1079. |
[2] |
B.-L. Chen, G. Xu and Z. Zhang, Local pinching estimates in 3-dim Ricci flow, Math. Res. Lett., 20 (2013), 845-855.
doi: 10.4310/MRL.2013.v20.n5.a3. |
[3] |
R. S. Hamilton, A compactness property for solutions of the Ricci flow, Amer. J. Math., 117 (1995), 545-572.
doi: 10.2307/2375080. |
[4] |
V. Kapovitch, Regularity of limits of noncollapsing sequences of manifolds, Geom. Funct. Anal., 12 (2002), 121-137.
doi: 10.1007/s00039-002-8240-1. |
[5] |
A. Petrunin, Polyhedral approximations of Riemannian manifolds, Turkish J. Math., 27 (2003), 173-187. |
[6] |
T. Richard, Lower bounds on Ricci flow invariant curvatures and geometric applications, J. Reine Angew. Math., 703 (2015), 27-41.
doi: 10.1515/crelle-2013-0042. |
[7] |
M. Simon, Ricci flow of almost non-negatively curved three manifolds, J. Reine Angew. Math., 630 (2009), 177-217.
doi: 10.1515/CRELLE.2009.038. |
[8] |
M. Simon, Ricci flow of non-collapsed three manifolds whose Ricci curvature is bounded from below, J. Reine Angew. Math., 662 (2012), 59-94.
doi: 10.1515/CRELLE.2011.088. |
[9] |
W. Spindeler, $S^1$-Actions on 4-Manifolds and Fixed Point Homogeneous Manifolds of Nonnegative Curvature, Ph.D. Thesis, 2014. |
show all references
References:
[1] |
C. Böhm and B. Wilking, Manifolds with positive curvature operators are space forms, Ann. of Math. (2), 167 (2008), 1079-1097.
doi: 10.4007/annals.2008.167.1079. |
[2] |
B.-L. Chen, G. Xu and Z. Zhang, Local pinching estimates in 3-dim Ricci flow, Math. Res. Lett., 20 (2013), 845-855.
doi: 10.4310/MRL.2013.v20.n5.a3. |
[3] |
R. S. Hamilton, A compactness property for solutions of the Ricci flow, Amer. J. Math., 117 (1995), 545-572.
doi: 10.2307/2375080. |
[4] |
V. Kapovitch, Regularity of limits of noncollapsing sequences of manifolds, Geom. Funct. Anal., 12 (2002), 121-137.
doi: 10.1007/s00039-002-8240-1. |
[5] |
A. Petrunin, Polyhedral approximations of Riemannian manifolds, Turkish J. Math., 27 (2003), 173-187. |
[6] |
T. Richard, Lower bounds on Ricci flow invariant curvatures and geometric applications, J. Reine Angew. Math., 703 (2015), 27-41.
doi: 10.1515/crelle-2013-0042. |
[7] |
M. Simon, Ricci flow of almost non-negatively curved three manifolds, J. Reine Angew. Math., 630 (2009), 177-217.
doi: 10.1515/CRELLE.2009.038. |
[8] |
M. Simon, Ricci flow of non-collapsed three manifolds whose Ricci curvature is bounded from below, J. Reine Angew. Math., 662 (2012), 59-94.
doi: 10.1515/CRELLE.2011.088. |
[9] |
W. Spindeler, $S^1$-Actions on 4-Manifolds and Fixed Point Homogeneous Manifolds of Nonnegative Curvature, Ph.D. Thesis, 2014. |
[1] |
Yafeng Li, Guo Sun, Yiju Wang. A smoothing Broyden-like method for polyhedral cone constrained eigenvalue problem. Numerical Algebra, Control and Optimization, 2011, 1 (3) : 529-537. doi: 10.3934/naco.2011.1.529 |
[2] |
Alberto Farina, Jesús Ocáriz. Splitting theorems on complete Riemannian manifolds with nonnegative Ricci curvature. Discrete and Continuous Dynamical Systems, 2021, 41 (4) : 1929-1937. doi: 10.3934/dcds.2020347 |
[3] |
Alberto Farina, Enrico Valdinoci. A pointwise gradient bound for elliptic equations on compact manifolds with nonnegative Ricci curvature. Discrete and Continuous Dynamical Systems, 2011, 30 (4) : 1139-1144. doi: 10.3934/dcds.2011.30.1139 |
[4] |
Xumin Jiang. Isometric embedding with nonnegative Gauss curvature under the graph setting. Discrete and Continuous Dynamical Systems, 2019, 39 (6) : 3463-3477. doi: 10.3934/dcds.2019143 |
[5] |
Diego Castellaneta, Alberto Farina, Enrico Valdinoci. A pointwise gradient estimate for solutions of singular and degenerate pde's in possibly unbounded domains with nonnegative mean curvature. Communications on Pure and Applied Analysis, 2012, 11 (5) : 1983-2003. doi: 10.3934/cpaa.2012.11.1983 |
[6] |
Xinqun Mei, Jundong Zhou. The interior gradient estimate of prescribed Hessian quotient curvature equation in the hyperbolic space. Communications on Pure and Applied Analysis, 2021, 20 (3) : 1187-1198. doi: 10.3934/cpaa.2021012 |
[7] |
Joel Spruck, Ling Xiao. Convex spacelike hypersurfaces of constant curvature in de Sitter space. Discrete and Continuous Dynamical Systems - B, 2012, 17 (6) : 2225-2242. doi: 10.3934/dcdsb.2012.17.2225 |
[8] |
Yoshikazu Giga, Yukihiro Seki, Noriaki Umeda. On decay rate of quenching profile at space infinity for axisymmetric mean curvature flow. Discrete and Continuous Dynamical Systems, 2011, 29 (4) : 1463-1470. doi: 10.3934/dcds.2011.29.1463 |
[9] |
Matthias Bergner, Lars Schäfer. Time-like surfaces of prescribed anisotropic mean curvature in Minkowski space. Conference Publications, 2011, 2011 (Special) : 155-162. doi: 10.3934/proc.2011.2011.155 |
[10] |
Chiara Corsato, Franco Obersnel, Pierpaolo Omari, Sabrina Rivetti. On the lower and upper solution method for the prescribed mean curvature equation in Minkowski space. Conference Publications, 2013, 2013 (special) : 159-169. doi: 10.3934/proc.2013.2013.159 |
[11] |
Hongjie Ju, Jian Lu, Huaiyu Jian. Translating solutions to mean curvature flow with a forcing term in Minkowski space. Communications on Pure and Applied Analysis, 2010, 9 (4) : 963-973. doi: 10.3934/cpaa.2010.9.963 |
[12] |
Elias M. Guio, Ricardo Sa Earp. Existence and non-existence for a mean curvature equation in hyperbolic space. Communications on Pure and Applied Analysis, 2005, 4 (3) : 549-568. doi: 10.3934/cpaa.2005.4.549 |
[13] |
Qinian Jin, YanYan Li. Starshaped compact hypersurfaces with prescribed $k$-th mean curvature in hyperbolic space. Discrete and Continuous Dynamical Systems, 2006, 15 (2) : 367-377. doi: 10.3934/dcds.2006.15.367 |
[14] |
Aiting Le, Chenyin Qian. Smoothing effect and well-posedness for 2D Boussinesq equations in critical Sobolev space. Discrete and Continuous Dynamical Systems - B, 2022 doi: 10.3934/dcdsb.2022057 |
[15] |
Oleksandr Misiats, Nung Kwan Yip. Convergence of space-time discrete threshold dynamics to anisotropic motion by mean curvature. Discrete and Continuous Dynamical Systems, 2016, 36 (11) : 6379-6411. doi: 10.3934/dcds.2016076 |
[16] |
Ruyun Ma, Man Xu. Connected components of positive solutions for a Dirichlet problem involving the mean curvature operator in Minkowski space. Discrete and Continuous Dynamical Systems - B, 2019, 24 (6) : 2701-2718. doi: 10.3934/dcdsb.2018271 |
[17] |
Daniela Gurban, Petru Jebelean, Cǎlin Şerban. Non-potential and non-radial Dirichlet systems with mean curvature operator in Minkowski space. Discrete and Continuous Dynamical Systems, 2020, 40 (1) : 133-151. doi: 10.3934/dcds.2020006 |
[18] |
Nicolas Bedaride. Entropy of polyhedral billiard. Discrete and Continuous Dynamical Systems, 2007, 19 (1) : 89-102. doi: 10.3934/dcds.2007.19.89 |
[19] |
Ye Tian, Qingwei Jin, Zhibin Deng. Quadratic optimization over a polyhedral cone. Journal of Industrial and Management Optimization, 2016, 12 (1) : 269-283. doi: 10.3934/jimo.2016.12.269 |
[20] |
Janusz Mierczyński. Averaging in random systems of nonnegative matrices. Conference Publications, 2015, 2015 (special) : 835-840. doi: 10.3934/proc.2015.0835 |
2020 Impact Factor: 0.929
Tools
Metrics
Other articles
by authors
[Back to Top]