-
Previous Article
Proof of the main conjecture on $g$-areas
- ERA-MS Home
- This Volume
-
Next Article
Fixed frequency eigenfunction immersions and supremum norms of random waves
A Besicovitch cylindrical transformation with Hölder function
1. | Lomonosov Moscow State University, Russian Federation |
References:
[1] |
K. Frączek and M. Lemańczyk, On the Hausdorff dimension of the set of closed orbits for a cylindrical transformation, Nonlinearity, 23 (2010), 2393-2422.
doi: 10.1088/0951-7715/23/10/003. |
[2] |
A. S. Besicovitch, A problem on topological transformations of the plane. II, Proc. Cambridge Philos. Soc., 47 (1951), 38-45.
doi: 10.1017/S0305004100026347. |
[3] |
W. H. Gottschalk and G. A. Hedlund, Topological Dynamics, Amer. Math. Soc. Colloq. Publ., Vol. 36, Amer. Math. Soc., Providence, RI, 1955. |
[4] |
E. Dymek, Transitive cylinder flows whose set of discrete points is of full Hausdorff dimension, arXiv:1303.3099v1, 2013. |
[5] |
A. Kochergin, A mixing special flow over a circle rotation with almost Lipschitz function, Sbornik: Mathematics, 193 (2002), 359-385.
doi: 10.1070/SM2002v193n03ABEH000636. |
[6] |
K. Falconer, Fractal Geometry. Mathematical Foundations and Applications, Second edition, John Wiley & Sons, Inc., Hoboken, NJ, 2003.
doi: 10.1002/0470013850. |
show all references
References:
[1] |
K. Frączek and M. Lemańczyk, On the Hausdorff dimension of the set of closed orbits for a cylindrical transformation, Nonlinearity, 23 (2010), 2393-2422.
doi: 10.1088/0951-7715/23/10/003. |
[2] |
A. S. Besicovitch, A problem on topological transformations of the plane. II, Proc. Cambridge Philos. Soc., 47 (1951), 38-45.
doi: 10.1017/S0305004100026347. |
[3] |
W. H. Gottschalk and G. A. Hedlund, Topological Dynamics, Amer. Math. Soc. Colloq. Publ., Vol. 36, Amer. Math. Soc., Providence, RI, 1955. |
[4] |
E. Dymek, Transitive cylinder flows whose set of discrete points is of full Hausdorff dimension, arXiv:1303.3099v1, 2013. |
[5] |
A. Kochergin, A mixing special flow over a circle rotation with almost Lipschitz function, Sbornik: Mathematics, 193 (2002), 359-385.
doi: 10.1070/SM2002v193n03ABEH000636. |
[6] |
K. Falconer, Fractal Geometry. Mathematical Foundations and Applications, Second edition, John Wiley & Sons, Inc., Hoboken, NJ, 2003.
doi: 10.1002/0470013850. |
[1] |
Łukasz Struski, Jacek Tabor. Expansivity implies existence of Hölder continuous Lyapunov function. Discrete and Continuous Dynamical Systems - B, 2017, 22 (9) : 3575-3589. doi: 10.3934/dcdsb.2017180 |
[2] |
Boris Muha. A note on the Trace Theorem for domains which are locally subgraph of a Hölder continuous function. Networks and Heterogeneous Media, 2014, 9 (1) : 191-196. doi: 10.3934/nhm.2014.9.191 |
[3] |
Charles Pugh, Michael Shub, Amie Wilkinson. Hölder foliations, revisited. Journal of Modern Dynamics, 2012, 6 (1) : 79-120. doi: 10.3934/jmd.2012.6.79 |
[4] |
Jinpeng An. Hölder stability of diffeomorphisms. Discrete and Continuous Dynamical Systems, 2009, 24 (2) : 315-329. doi: 10.3934/dcds.2009.24.315 |
[5] |
Sergey P. Degtyarev. On Fourier multipliers in function spaces with partial Hölder condition and their application to the linearized Cahn-Hilliard equation with dynamic boundary conditions. Evolution Equations and Control Theory, 2015, 4 (4) : 391-429. doi: 10.3934/eect.2015.4.391 |
[6] |
Luis Barreira, Claudia Valls. Hölder Grobman-Hartman linearization. Discrete and Continuous Dynamical Systems, 2007, 18 (1) : 187-197. doi: 10.3934/dcds.2007.18.187 |
[7] |
Rafael De La Llave, R. Obaya. Regularity of the composition operator in spaces of Hölder functions. Discrete and Continuous Dynamical Systems, 1999, 5 (1) : 157-184. doi: 10.3934/dcds.1999.5.157 |
[8] |
Luca Lorenzi. Optimal Hölder regularity for nonautonomous Kolmogorov equations. Discrete and Continuous Dynamical Systems - S, 2011, 4 (1) : 169-191. doi: 10.3934/dcdss.2011.4.169 |
[9] |
Vincent Lynch. Decay of correlations for non-Hölder observables. Discrete and Continuous Dynamical Systems, 2006, 16 (1) : 19-46. doi: 10.3934/dcds.2006.16.19 |
[10] |
Walter Allegretto, Yanping Lin, Shuqing Ma. Hölder continuous solutions of an obstacle thermistor problem. Discrete and Continuous Dynamical Systems - B, 2004, 4 (4) : 983-997. doi: 10.3934/dcdsb.2004.4.983 |
[11] |
Pedro Duarte, Silvius Klein, Manuel Santos. A random cocycle with non Hölder Lyapunov exponent. Discrete and Continuous Dynamical Systems, 2019, 39 (8) : 4841-4861. doi: 10.3934/dcds.2019197 |
[12] |
Slobodan N. Simić. Hölder forms and integrability of invariant distributions. Discrete and Continuous Dynamical Systems, 2009, 25 (2) : 669-685. doi: 10.3934/dcds.2009.25.669 |
[13] |
Mykola Krasnoschok, Nataliya Vasylyeva. Linear subdiffusion in weighted fractional Hölder spaces. Evolution Equations and Control Theory, 2022, 11 (4) : 1455-1487. doi: 10.3934/eect.2021050 |
[14] |
Jan Kwiatkowski, Artur Siemaszko. Discrete orbits in topologically transitive cylindrical transformations. Discrete and Continuous Dynamical Systems, 2010, 27 (3) : 945-961. doi: 10.3934/dcds.2010.27.945 |
[15] |
Samia Challal, Abdeslem Lyaghfouri. Hölder continuity of solutions to the $A$-Laplace equation involving measures. Communications on Pure and Applied Analysis, 2009, 8 (5) : 1577-1583. doi: 10.3934/cpaa.2009.8.1577 |
[16] |
Lili Li, Chunrong Chen. Nonlinear scalarization with applications to Hölder continuity of approximate solutions. Numerical Algebra, Control and Optimization, 2014, 4 (4) : 295-307. doi: 10.3934/naco.2014.4.295 |
[17] |
Eugen Mihailescu. Unstable manifolds and Hölder structures associated with noninvertible maps. Discrete and Continuous Dynamical Systems, 2006, 14 (3) : 419-446. doi: 10.3934/dcds.2006.14.419 |
[18] |
Alexander I. Bufetov. Hölder cocycles and ergodic integrals for translation flows on flat surfaces. Electronic Research Announcements, 2010, 17: 34-42. doi: 10.3934/era.2010.17.34 |
[19] |
Eugen Mihailescu. Approximations for Gibbs states of arbitrary Hölder potentials on hyperbolic folded sets. Discrete and Continuous Dynamical Systems, 2012, 32 (3) : 961-975. doi: 10.3934/dcds.2012.32.961 |
[20] |
Lucio Boccardo, Alessio Porretta. Uniqueness for elliptic problems with Hölder--type dependence on the solution. Communications on Pure and Applied Analysis, 2013, 12 (4) : 1569-1585. doi: 10.3934/cpaa.2013.12.1569 |
2020 Impact Factor: 0.929
Tools
Metrics
Other articles
by authors
[Back to Top]