Advanced Search
Article Contents
Article Contents

Nonexistence results for a fully nonlinear evolution inequality

Abstract Related Papers Cited by
  • In this paper, a Liouville type theorem is proved for some global fully nonlinear evolution inequality via suitable choices of test functions and the argument of integration by parts.
    Mathematics Subject Classification: 35K55, 35R45.


    \begin{equation} \\ \end{equation}
  • [1]

    L. Caffarelli, L. Nirenberg and J. Spruck, The Dirichlet problem for nonlinear second-order elliptic equations. III. Functions of the eigenvalues of the Hessian, Acta Math., 155 (1985), 261-301.doi: 10.1007/BF02392544.


    H. Fujita, On the blowing up of solutions of the Cauchy problems for $u_t=\Delta u + u^{1+\alpha}$, J. Fac. Sci. Univ. Tokyo, Sect. I, 13 (1966), 109-124.


    K. Hayakawa, On the nonexistence of global solutions of some semilinear parabolic equations, Proc. Japan Acad., 49 (1973), 503-505.doi: 10.3792/pja/1195519254.


    D. Labutin, Potential estimates for a class of fully nonlinear elliptic equations, Duke Math. J., 111 (2002), 1-49.doi: 10.1215/S0012-7094-02-11111-9.


    E. Mitidieri and S. Pohozaev, Towards a unified approach to nonexistence of solutions for a class of differential inequalities, Milan J. Math., 72 (2004), 129-162.doi: 10.1007/s00032-004-0032-7.


    Q. Ou, Nonexistence results for Hessian inequality, Methods Appl. Anal., 17 (2010), 213-223.doi: 10.4310/MAA.2010.v17.n2.a5.


    N. C. Phuc and I. E. Verbitsky, Quasilinear and Hessian equations of Lane-Emden type, Ann. of Math., 168 (2008), 859-914.doi: 10.4007/annals.2008.168.859.


    N. C. Phuc and I. E. Verbitsky, Local integral estimates and removable singularities for quasilinear and Hessian equations with nonlinear source terms, Comm. Partial Differential Equations, 31 (2006), 1779-1791.doi: 10.1080/03605300600783549.


    N. Trudinger and X.-J. Wang, Hessian measures. I. Dedicated to Olga Ladyzhenskaya, Topo. Methods Nonlinear Anal., 10 (1997), 225-239.


    N. Trudinger and X.-J. Wang, Hessian measures. II, Ann. of Math. (2), 150 (1999), 579-604.doi: 10.2307/121089.


    N. Trudinger and X.-J. Wang, Hessian measures. III, J. Funct. Anal., 193 (2002), 1-23.doi: 10.1006/jfan.2001.3925.

  • 加载中

Article Metrics

HTML views() PDF downloads(190) Cited by(0)

Access History

Other Articles By Authors



    DownLoad:  Full-Size Img  PowerPoint