-
Previous Article
Rigidity of the ${{L}^{p}}$-norm of the Poisson bracket on surfaces
- ERA-MS Home
- This Volume
-
Next Article
Equational theories of unstable involution semigroups
The orbifold Langer-Miyaoka-Yau Inequality and Hirzebruch-type inequalities
1. | Instytut Matematyki, Pedagogical University of Cracow, Podchorążych 2, PL-30-084 Kraków, Poland |
2. | Institut für Algebraische Geometrie, Leibniz Universität Hannover, Welfengarten 1, D-30167 Hannover, Germany |
Using Langer's variation on the Bogomolov-Miyaoka-Yau inequality, we provide some Hirzebruch-type inequalities for curve arrangements in the complex projective plane.
References:
[1] |
G. Barthel, F. Hirzebruch and Th. Höfer, Geradenkonfigurationen und Algebraische Flächen, Aspects of Mathematics, D4, Vieweg, Braunschweig, 1987.
doi: 10.1007/978-3-322-92886-3. |
[2] |
R. Bojanowski, Zastosowania Uogólnionej Nierówno÷ci Bogomolova-Miyaoka-Yau, Master Thesis (in Polish), 2003. Available from: http://www.mimuw.edu.pl/%7Ealan/postscript/bojanowski.ps. |
[3] |
E. Brieskorn and H. Knörrer, Ebene Algebraische Kurven, Birkhäuser Verlag, Basel u. a., 1981. |
[4] |
P. Cassou-Noguè and A. Płoski,
Invariants of plane curve singularities and Newton diagrams, Univ. Iagel. Acta Math., 49 (2011), 9-34.
|
[5] |
F. Hirzebruch, Arrangements of lines and algebraic surfaces, in Arithmetic and Geometry, Vol. II, Progr. Math., 36, Birkhäuser, Boston, Mass., 1983,113-140. |
[6] |
F. Hirzebruch, Singularities of algebraic surfaces and characteristic numbers, in The Lefschetz Centennial Conference, Part I (Mexico City, 1984), Contemp. Math., 58, Amer. Math. Soc., Providence, RI, 1986,141-155.
doi: 10.1090/conm/058.1/860410. |
[7] |
V. Klee and S. Wagon, Old and New Unsolved Problems in Plane Geometry and Number Theory, The Mathematical Association of America, 1991. |
[8] |
A. Langer,
Logarithmic orbifold Euler numbers with applications, Proc. London Math. Soc., 86 (2003), 358-396.
doi: 10.1112/S0024611502013874. |
[9] |
Y. Miyaoka,
On the Chern numbers of surfaces of general type, Invent. Math., 42 (1977), 225-237.
doi: 10.1007/BF01389789. |
[10] |
P. Pokora, X. Roulleau and T. Szemberg, Bounded negativity, Harbourne constants and transversal arrangements of curves, to appear in Ann. Inst. Fourier Grenoble, arXiv: 1602.02379. |
[11] |
H. Schenck and S. Tohaneanu,
Freeness of Conic-Line arrangements in ℙ2, Commentarii Mathematici Helvetici, 84 (2009), 235-258.
doi: 10.4171/CMH/161. |
[12] |
L. Tang,
Algebraic surfaces associated to arrangements of conics, Soochow Journal of Mathematics, 21 (1995), 427-440.
|
[13] |
Z. Han, A note on the weak Dirac conjecture, The Electronic Journal of Combinatorics, 24 (2017). Available from: http://www.combinatorics.org/ojs/index.php/eljc/article/view/v24i1p63. |
show all references
References:
[1] |
G. Barthel, F. Hirzebruch and Th. Höfer, Geradenkonfigurationen und Algebraische Flächen, Aspects of Mathematics, D4, Vieweg, Braunschweig, 1987.
doi: 10.1007/978-3-322-92886-3. |
[2] |
R. Bojanowski, Zastosowania Uogólnionej Nierówno÷ci Bogomolova-Miyaoka-Yau, Master Thesis (in Polish), 2003. Available from: http://www.mimuw.edu.pl/%7Ealan/postscript/bojanowski.ps. |
[3] |
E. Brieskorn and H. Knörrer, Ebene Algebraische Kurven, Birkhäuser Verlag, Basel u. a., 1981. |
[4] |
P. Cassou-Noguè and A. Płoski,
Invariants of plane curve singularities and Newton diagrams, Univ. Iagel. Acta Math., 49 (2011), 9-34.
|
[5] |
F. Hirzebruch, Arrangements of lines and algebraic surfaces, in Arithmetic and Geometry, Vol. II, Progr. Math., 36, Birkhäuser, Boston, Mass., 1983,113-140. |
[6] |
F. Hirzebruch, Singularities of algebraic surfaces and characteristic numbers, in The Lefschetz Centennial Conference, Part I (Mexico City, 1984), Contemp. Math., 58, Amer. Math. Soc., Providence, RI, 1986,141-155.
doi: 10.1090/conm/058.1/860410. |
[7] |
V. Klee and S. Wagon, Old and New Unsolved Problems in Plane Geometry and Number Theory, The Mathematical Association of America, 1991. |
[8] |
A. Langer,
Logarithmic orbifold Euler numbers with applications, Proc. London Math. Soc., 86 (2003), 358-396.
doi: 10.1112/S0024611502013874. |
[9] |
Y. Miyaoka,
On the Chern numbers of surfaces of general type, Invent. Math., 42 (1977), 225-237.
doi: 10.1007/BF01389789. |
[10] |
P. Pokora, X. Roulleau and T. Szemberg, Bounded negativity, Harbourne constants and transversal arrangements of curves, to appear in Ann. Inst. Fourier Grenoble, arXiv: 1602.02379. |
[11] |
H. Schenck and S. Tohaneanu,
Freeness of Conic-Line arrangements in ℙ2, Commentarii Mathematici Helvetici, 84 (2009), 235-258.
doi: 10.4171/CMH/161. |
[12] |
L. Tang,
Algebraic surfaces associated to arrangements of conics, Soochow Journal of Mathematics, 21 (1995), 427-440.
|
[13] |
Z. Han, A note on the weak Dirac conjecture, The Electronic Journal of Combinatorics, 24 (2017). Available from: http://www.combinatorics.org/ojs/index.php/eljc/article/view/v24i1p63. |
[1] |
Marek Janasz, Piotr Pokora. On Seshadri constants and point-curve configurations. Electronic Research Archive, 2020, 28 (2) : 795-805. doi: 10.3934/era.2020040 |
[2] |
James Scott, Tadele Mengesha. A fractional Korn-type inequality. Discrete and Continuous Dynamical Systems, 2019, 39 (6) : 3315-3343. doi: 10.3934/dcds.2019137 |
[3] |
Barbara Brandolini, Francesco Chiacchio, Cristina Trombetti. Hardy type inequalities and Gaussian measure. Communications on Pure and Applied Analysis, 2007, 6 (2) : 411-428. doi: 10.3934/cpaa.2007.6.411 |
[4] |
Friedemann Brock, Francesco Chiacchio, Giuseppina di Blasio. Optimal Szegö-Weinberger type inequalities. Communications on Pure and Applied Analysis, 2016, 15 (2) : 367-383. doi: 10.3934/cpaa.2016.15.367 |
[5] |
Juan Luis Vázquez, Nikolaos B. Zographopoulos. Hardy type inequalities and hidden energies. Discrete and Continuous Dynamical Systems, 2013, 33 (11&12) : 5457-5491. doi: 10.3934/dcds.2013.33.5457 |
[6] |
Daesung Kim. Instability results for the logarithmic Sobolev inequality and its application to related inequalities. Discrete and Continuous Dynamical Systems, 2022 doi: 10.3934/dcds.2022053 |
[7] |
Shu-Yu Hsu. Some results for the Perelman LYH-type inequality. Discrete and Continuous Dynamical Systems, 2014, 34 (9) : 3535-3554. doi: 10.3934/dcds.2014.34.3535 |
[8] |
Fahd Jarad, Yassine Adjabi, Thabet Abdeljawad, Saed F. Mallak, Hussam Alrabaiah. Lyapunov type inequality in the frame of generalized Caputo derivatives. Discrete and Continuous Dynamical Systems - S, 2021, 14 (7) : 2335-2355. doi: 10.3934/dcdss.2020212 |
[9] |
Angelo Alvino, Roberta Volpicelli, Bruno Volzone. A remark on Hardy type inequalities with remainder terms. Discrete and Continuous Dynamical Systems - S, 2011, 4 (4) : 801-807. doi: 10.3934/dcdss.2011.4.801 |
[10] |
Xiaobao Zhu. Remarks on singular trudinger-moser type inequalities. Communications on Pure and Applied Analysis, 2020, 19 (1) : 103-112. doi: 10.3934/cpaa.2020006 |
[11] |
Rong Hu, Ya-Ping Fang, Nan-Jing Huang. Levitin-Polyak well-posedness for variational inequalities and for optimization problems with variational inequality constraints. Journal of Industrial and Management Optimization, 2010, 6 (3) : 465-481. doi: 10.3934/jimo.2010.6.465 |
[12] |
José Francisco de Oliveira, João Marcos do Ó, Pedro Ubilla. Hardy-Sobolev type inequality and supercritical extremal problem. Discrete and Continuous Dynamical Systems, 2019, 39 (6) : 3345-3364. doi: 10.3934/dcds.2019138 |
[13] |
Jun Zhou, Jun Shen, Weinian Zhang. A powered Gronwall-type inequality and applications to stochastic differential equations. Discrete and Continuous Dynamical Systems, 2016, 36 (12) : 7207-7234. doi: 10.3934/dcds.2016114 |
[14] |
Leszek Gasiński. Optimal control problem of Bolza-type for evolution hemivariational inequality. Conference Publications, 2003, 2003 (Special) : 320-326. doi: 10.3934/proc.2003.2003.320 |
[15] |
Giovanni Cupini, Eugenio Vecchi. Faber-Krahn and Lieb-type inequalities for the composite membrane problem. Communications on Pure and Applied Analysis, 2019, 18 (5) : 2679-2691. doi: 10.3934/cpaa.2019119 |
[16] |
Andrea Cianchi, Adele Ferone. Improving sharp Sobolev type inequalities by optimal remainder gradient norms. Communications on Pure and Applied Analysis, 2012, 11 (3) : 1363-1386. doi: 10.3934/cpaa.2012.11.1363 |
[17] |
Kunquan Lan, Wei Lin. Lyapunov type inequalities for Hammerstein integral equations and applications to population dynamics. Discrete and Continuous Dynamical Systems - B, 2019, 24 (4) : 1943-1960. doi: 10.3934/dcdsb.2018256 |
[18] |
Bernhard Kawohl. Symmetry results for functions yielding best constants in Sobolev-type inequalities. Discrete and Continuous Dynamical Systems, 2000, 6 (3) : 683-690. doi: 10.3934/dcds.2000.6.683 |
[19] |
István Győri, László Horváth. Sharp estimation for the solutions of delay differential and Halanay type inequalities. Discrete and Continuous Dynamical Systems, 2017, 37 (6) : 3211-3242. doi: 10.3934/dcds.2017137 |
[20] |
Xiaofei He, X. H. Tang. Lyapunov-type inequalities for even order differential equations. Communications on Pure and Applied Analysis, 2012, 11 (2) : 465-473. doi: 10.3934/cpaa.2012.11.465 |
2020 Impact Factor: 0.929
Tools
Metrics
Other articles
by authors
[Back to Top]