For a symplectic manifold $(M,ω)$, let $\{·,·\}$ be the corresponding Poisson bracket. In this note we prove that the functional $ (F,G) \mapsto \|\{F,G\}\|_{L^p(M)} $ is lower-semicontinuous with respect to the $C^0$-norm on $C^∞_c(M)$ when $\dim M = 2$ and $p < ∞$, extending previous rigidity results for $p = ∞$ in arbitrary dimension.
Citation: |
[1] |
L. Buhovsky, The $2/3$
-convergence rate for the Poisson bracket, Geom. Funct. Anal., 19 (2010), 1620-1649.
doi: 10.1007/s00039-010-0045-z.![]() ![]() ![]() |
[2] |
S. S. Cairns, A simple triangulation method for smooth manifolds, Bull. Amer. Math. Soc., 67 (1961), 389-390.
doi: 10.1090/S0002-9904-1961-10631-9.![]() ![]() ![]() |
[3] |
F. Cardin and C. Viterbo, Commuting Hamiltonians and Hamilton-Jacobi multi-time equations, Duke Math. J., 144 (2008), 235-284.
doi: 10.1215/00127094-2008-036.![]() ![]() ![]() |
[4] |
M. Entov and L. Polterovich, $C^0$-rigidity of Poisson brackets, in Symplectic Topology and
Measure Preserving Dynamical Systems, Contemp. Math., 512, Amer. Math. Soc., Providence,
RI, 2010, 25–32.
doi: 10.1090/conm/512/10058.![]() ![]() ![]() |
[5] |
M. Entov, L. Polterovich and F. Zapolsky, Quasi-morphisms and the Poisson bracket, Pure Appl. Math. Q., 3 (2007), 1037-1055.
doi: 10.4310/PAMQ.2007.v3.n4.a9.![]() ![]() ![]() |
[6] |
H. Federer,
Geometric Measure Theory Die Grundlehren der mathematischen Wissenschaften, Band 153, Springer-Verlag New York Inc., New York, 1969.
![]() ![]() |
[7] |
K. Samvelyan,
Rigidity Versus Flexibility of the Poisson Bracket with Respect to the ${L}_p$
-Norm Master's thesis, Tel Aviv University, 2015.
![]() |
[8] |
F. Zapolsky, Quasi-states and the Poisson bracket on surfaces, J. Mod. Dyn., 1 (2007), 465-475.
doi: 10.3934/jmd.2007.1.465.![]() ![]() ![]() |