-
Previous Article
Sharpness of the Brascamp–Lieb inequality in Lorentz spaces
- ERA-MS Home
- This Volume
-
Next Article
Rigidity of the ${{L}^{p}}$-norm of the Poisson bracket on surfaces
Existence and uniqueness of weak solutions for a class of nonlinear parabolic equations
Department of Mathematics, Shanghai University, Shanghai 200444, China |
In this paper, we study the Dirichlet boundary value problem of a class of nonlinear parabolic equations. By a priori estimates, difference and variation techniques, we establish the existence and uniqueness of weak solutions of this problem.
References:
[1] |
G. Aubert and P. Kornprobst,
Mathematical Problems in Image Processing, Springer-Verlag, New York, 2002. |
[2] |
J. Alexopoulos,
de la Vallée Poussin's theorem and weakly compact sets in Orlicz spaces, Quaestiones Math., 17 (1994), 231-248.
doi: 10.1080/16073606.1994.9631762. |
[3] |
R. Adams,
Sobolev Spaces, Academic Press, New York-London, 1975. |
[4] |
J. M. Ball and F. Murat,
Remarks on Chacon's biting lemma, Proc. Amer. Math. Soc., 107 (1989), 655-663.
doi: 10.2307/2048162. |
[5] |
P. Clément, M. García-Huidobro, R. Manásevich and K. Schmitt,
Mountain pass type solutions for quasilinear elliptic equations, Calc. Var. Partial Differential Equations, 11 (2000), 33-62.
doi: 10.1007/s005260050002. |
[6] |
Y. Chen, S. Levine and M. Rao,
Variable exponent, linear growth functionals in image restoration, SIAM J. Appl. Math., 66 (2006), 1383-1406.
doi: 10.1137/050624522. |
[7] |
L. Diening,
Theoerical and Numerical Results for Electrorheological Fluids, Ph. D. Thesis, University of Freiburg, Germany, 2002. |
[8] |
L. C. Evans,
Weak Convergence Methods for Nonlinear Partial Differential Equations, Amer. Math. Soc., Providence, RI, 1990.
doi: 10.1090/cbms/074. |
[9] |
G. Fragnelli,
Positive periodic solutions for a system of anisotropic parabolic equations, J. Math. Anal. Appl., 367 (2010), 204-228.
doi: 10.1016/j.jmaa.2009.12.039. |
[10] |
M. Fuchs and L. Gongbao,
Variational inequalities for energy functionals with nonstandard growth conditions, Abstr. Appl. Anal., 3 (1998), 41-64.
doi: 10.1155/S1085337598000438. |
[11] |
M. Fuchs and V. Osmolovski,
Variational integrals on Orlicz-Sobolev spaces, Z. Anal. Anwendungen, 17 (1998), 393-415.
doi: 10.4171/ZAA/829. |
[12] |
N. Fukagai and K. Narukawa,
Nonlinear eigenvalue problem for a model equation of an elastic surface, Hiroshima Math. J., 25 (1995), 19-41.
|
[13] |
Z. Feng and Z. Yin,
On weak solutions for a class of nonlinear parabolic equations related to image analysis, Nonlinear Anal., 71 (2009), 2506-2517.
doi: 10.1016/j.na.2009.01.087. |
[14] |
P. Gwiazda and A. Świerczewska-Gwiazda,
On non-Newtonian fluids with a property of rapid thickeninig under different stimulus, Math. Models Methods Appl. Sci., 18 (2008), 1073-1092.
doi: 10.1142/S0218202508002954. |
[15] |
M. M. Rao and Z. D. Ren,
Applications of Orlicz Spaces, Marcel Dekker, Inc., New York, 2002.
doi: 10.1201/9780203910863. |
[16] |
K. R. Rajagopal and M. Ružička,
Mathematical modelling of electrorheological fluids, Continuum Mech. Thermodyn., 13 (2001), 59-78.
|
[17] |
M. Saadoune and M. Valadier,
Extraction of ''good" subsequence from a bounded sequence of integrable functions, J. Convex Anal., 2 (1995), 345-357.
|
[18] |
C. Wu,
Convex Functions and Orlicz Spaces, Science Press, Beijing, 1961. |
[19] |
L. Wang and S. Zhou,
Existence and uniqueness of weak solutions for a nonlinear parabolic equation related to image analysis, J. Partial Differential Equations, 19 (2006), 97-112.
|
[20] |
V. V. Zhikov,
Averaging of functionals of the calculus of variations and elasticity theory, Math. USSR Izv., 9 (1987), 33-66.
doi: 10.1070/IM1987v029n01ABEH000958. |
show all references
References:
[1] |
G. Aubert and P. Kornprobst,
Mathematical Problems in Image Processing, Springer-Verlag, New York, 2002. |
[2] |
J. Alexopoulos,
de la Vallée Poussin's theorem and weakly compact sets in Orlicz spaces, Quaestiones Math., 17 (1994), 231-248.
doi: 10.1080/16073606.1994.9631762. |
[3] |
R. Adams,
Sobolev Spaces, Academic Press, New York-London, 1975. |
[4] |
J. M. Ball and F. Murat,
Remarks on Chacon's biting lemma, Proc. Amer. Math. Soc., 107 (1989), 655-663.
doi: 10.2307/2048162. |
[5] |
P. Clément, M. García-Huidobro, R. Manásevich and K. Schmitt,
Mountain pass type solutions for quasilinear elliptic equations, Calc. Var. Partial Differential Equations, 11 (2000), 33-62.
doi: 10.1007/s005260050002. |
[6] |
Y. Chen, S. Levine and M. Rao,
Variable exponent, linear growth functionals in image restoration, SIAM J. Appl. Math., 66 (2006), 1383-1406.
doi: 10.1137/050624522. |
[7] |
L. Diening,
Theoerical and Numerical Results for Electrorheological Fluids, Ph. D. Thesis, University of Freiburg, Germany, 2002. |
[8] |
L. C. Evans,
Weak Convergence Methods for Nonlinear Partial Differential Equations, Amer. Math. Soc., Providence, RI, 1990.
doi: 10.1090/cbms/074. |
[9] |
G. Fragnelli,
Positive periodic solutions for a system of anisotropic parabolic equations, J. Math. Anal. Appl., 367 (2010), 204-228.
doi: 10.1016/j.jmaa.2009.12.039. |
[10] |
M. Fuchs and L. Gongbao,
Variational inequalities for energy functionals with nonstandard growth conditions, Abstr. Appl. Anal., 3 (1998), 41-64.
doi: 10.1155/S1085337598000438. |
[11] |
M. Fuchs and V. Osmolovski,
Variational integrals on Orlicz-Sobolev spaces, Z. Anal. Anwendungen, 17 (1998), 393-415.
doi: 10.4171/ZAA/829. |
[12] |
N. Fukagai and K. Narukawa,
Nonlinear eigenvalue problem for a model equation of an elastic surface, Hiroshima Math. J., 25 (1995), 19-41.
|
[13] |
Z. Feng and Z. Yin,
On weak solutions for a class of nonlinear parabolic equations related to image analysis, Nonlinear Anal., 71 (2009), 2506-2517.
doi: 10.1016/j.na.2009.01.087. |
[14] |
P. Gwiazda and A. Świerczewska-Gwiazda,
On non-Newtonian fluids with a property of rapid thickeninig under different stimulus, Math. Models Methods Appl. Sci., 18 (2008), 1073-1092.
doi: 10.1142/S0218202508002954. |
[15] |
M. M. Rao and Z. D. Ren,
Applications of Orlicz Spaces, Marcel Dekker, Inc., New York, 2002.
doi: 10.1201/9780203910863. |
[16] |
K. R. Rajagopal and M. Ružička,
Mathematical modelling of electrorheological fluids, Continuum Mech. Thermodyn., 13 (2001), 59-78.
|
[17] |
M. Saadoune and M. Valadier,
Extraction of ''good" subsequence from a bounded sequence of integrable functions, J. Convex Anal., 2 (1995), 345-357.
|
[18] |
C. Wu,
Convex Functions and Orlicz Spaces, Science Press, Beijing, 1961. |
[19] |
L. Wang and S. Zhou,
Existence and uniqueness of weak solutions for a nonlinear parabolic equation related to image analysis, J. Partial Differential Equations, 19 (2006), 97-112.
|
[20] |
V. V. Zhikov,
Averaging of functionals of the calculus of variations and elasticity theory, Math. USSR Izv., 9 (1987), 33-66.
doi: 10.1070/IM1987v029n01ABEH000958. |
[1] |
Yong Zeng. Existence and uniqueness of very weak solution of the MHD type system. Discrete and Continuous Dynamical Systems, 2020, 40 (10) : 5617-5638. doi: 10.3934/dcds.2020240 |
[2] |
Toyohiko Aiki, Adrian Muntean. On uniqueness of a weak solution of one-dimensional concrete carbonation problem. Discrete and Continuous Dynamical Systems, 2011, 29 (4) : 1345-1365. doi: 10.3934/dcds.2011.29.1345 |
[3] |
Gökçe Dİlek Küçük, Gabil Yagub, Ercan Çelİk. On the existence and uniqueness of the solution of an optimal control problem for Schrödinger equation. Discrete and Continuous Dynamical Systems - S, 2019, 12 (3) : 503-512. doi: 10.3934/dcdss.2019033 |
[4] |
Chunqing Lu. Existence and uniqueness of single spike solution of the carrier-pearson problem. Conference Publications, 2001, 2001 (Special) : 259-264. doi: 10.3934/proc.2001.2001.259 |
[5] |
Taebeom Kim, Sunčica Čanić, Giovanna Guidoboni. Existence and uniqueness of a solution to a three-dimensional axially symmetric Biot problem arising in modeling blood flow. Communications on Pure and Applied Analysis, 2010, 9 (4) : 839-865. doi: 10.3934/cpaa.2010.9.839 |
[6] |
Caisheng Chen, Qing Yuan. Existence of solution to $p-$Kirchhoff type problem in $\mathbb{R}^N$ via Nehari manifold. Communications on Pure and Applied Analysis, 2014, 13 (6) : 2289-2303. doi: 10.3934/cpaa.2014.13.2289 |
[7] |
Toyohiko Aiki. On the existence of a weak solution to a free boundary problem for a model of a shape memory alloy spring. Discrete and Continuous Dynamical Systems - S, 2012, 5 (1) : 1-13. doi: 10.3934/dcdss.2012.5.1 |
[8] |
Zhenhua Guo, Zilai Li. Global existence of weak solution to the free boundary problem for compressible Navier-Stokes. Kinetic and Related Models, 2016, 9 (1) : 75-103. doi: 10.3934/krm.2016.9.75 |
[9] |
Dominique Blanchard, Nicolas Bruyère, Olivier Guibé. Existence and uniqueness of the solution of a Boussinesq system with nonlinear dissipation. Communications on Pure and Applied Analysis, 2013, 12 (5) : 2213-2227. doi: 10.3934/cpaa.2013.12.2213 |
[10] |
Sören Bartels, Marijo Milicevic. Iterative finite element solution of a constrained total variation regularized model problem. Discrete and Continuous Dynamical Systems - S, 2017, 10 (6) : 1207-1232. doi: 10.3934/dcdss.2017066 |
[11] |
Meng Wang, Wendong Wang, Zhifei Zhang. On the uniqueness of weak solution for the 2-D Ericksen--Leslie system. Discrete and Continuous Dynamical Systems - B, 2016, 21 (3) : 919-941. doi: 10.3934/dcdsb.2016.21.919 |
[12] |
Cong Qin, Xinfu Chen. A new weak solution to an optimal stopping problem. Discrete and Continuous Dynamical Systems - B, 2020, 25 (12) : 4823-4837. doi: 10.3934/dcdsb.2020128 |
[13] |
Shihui Zhu. Existence and uniqueness of global weak solutions of the Camassa-Holm equation with a forcing. Discrete and Continuous Dynamical Systems, 2016, 36 (9) : 5201-5221. doi: 10.3934/dcds.2016026 |
[14] |
T. Tachim Medjo. On the existence and uniqueness of solution to a stochastic simplified liquid crystal model. Communications on Pure and Applied Analysis, 2019, 18 (5) : 2243-2264. doi: 10.3934/cpaa.2019101 |
[15] |
Fouad Hadj Selem, Hiroaki Kikuchi, Juncheng Wei. Existence and uniqueness of singular solution to stationary Schrödinger equation with supercritical nonlinearity. Discrete and Continuous Dynamical Systems, 2013, 33 (10) : 4613-4626. doi: 10.3934/dcds.2013.33.4613 |
[16] |
Ghendrih Philippe, Hauray Maxime, Anne Nouri. Derivation of a gyrokinetic model. Existence and uniqueness of specific stationary solution. Kinetic and Related Models, 2009, 2 (4) : 707-725. doi: 10.3934/krm.2009.2.707 |
[17] |
Dominique Blanchard, Olivier Guibé, Hicham Redwane. Existence and uniqueness of a solution for a class of parabolic equations with two unbounded nonlinearities. Communications on Pure and Applied Analysis, 2016, 15 (1) : 197-217. doi: 10.3934/cpaa.2016.15.197 |
[18] |
Claudianor O. Alves, Tahir Boudjeriou. Existence of solution for a class of heat equation in whole $ \mathbb{R}^N $. Discrete and Continuous Dynamical Systems, 2021, 41 (9) : 4125-4144. doi: 10.3934/dcds.2021031 |
[19] |
Keisuke Takasao. Existence of weak solution for mean curvature flow with transport term and forcing term. Communications on Pure and Applied Analysis, 2020, 19 (5) : 2655-2677. doi: 10.3934/cpaa.2020116 |
[20] |
Alain Hertzog, Antoine Mondoloni. Existence of a weak solution for a quasilinear wave equation with boundary condition. Communications on Pure and Applied Analysis, 2002, 1 (2) : 191-219. doi: 10.3934/cpaa.2002.1.191 |
2020 Impact Factor: 0.929
Tools
Article outline
[Back to Top]