-
Previous Article
A note on parallelizable dynamical systems
- ERA-MS Home
- This Volume
-
Next Article
Existence and uniqueness of weak solutions for a class of nonlinear parabolic equations
Sharpness of the Brascamp–Lieb inequality in Lorentz spaces
1. | Department of Mathematics, Graduate School of Science and Engineering, Saitama University, Saitama 338-8570, Japan |
2. | Department of Mathematical Sciences, Seoul National University, Seoul 151-747, Korea |
3. | Department of Mathematics and Information Sciences, Tokyo Metropolitan University, 1-1 Minami-Ohsawa, Hachioji, Tokyo, 192-0397, Japan |
We provide necessary conditions for the refined version of the Brascamp-Lieb inequality where the input functions are allowed to belong to Lorentz spaces, thereby establishing the sharpness of the range of Lorentz exponents in the subcritical case. Using similar considerations, some sharp refinements of the Strichartz estimates for the kinetic transport equation are established.
References:
[1] |
K. Astala, D. Faraco and K. Rogers,
On Plancherel's identity for a 2D scattering transform, Nonlinearity, 28 (2015), 2721-2729.
doi: 10.1088/0951-7715/28/8/2721. |
[2] |
K. Ball, Volumes of sections of cubes and related problems, in Geometric Aspects
of Functional Analysis (eds. J. Lindenstrauss and V. D. Milman), Springer Lecture
Notes in Math., 1376, Springer-Verlag, 1989,251–260.
doi: 10.1007/BFb0090058. |
[3] |
F. Barthe,
On a reverse form of the Brascamp-Lieb inequality, Invent. Math., 134 (1998), 355-361.
doi: 10.1007/s002220050267. |
[4] |
J. Bennett, N. Bez, T. Flock and S. Lee, Stability of the Brascamp–Lieb constant
and applications, to appear in American Journal of Mathematics. |
[5] |
J. Bennett, N. Bez, S. Gutiérrez and S. Lee,
On the Strichartz estimates for the kinetic transport equation, Comm. Partial Differential Equations, 39 (2014), 1821-1826.
doi: 10.1080/03605302.2013.850880. |
[6] |
J. Bennett, A. Carbery, M. Christ and T. Tao,
The Brascamp-Lieb inequalities: Finiteness, structure and extremals, Geom. Funct. Anal., 17 (2008), 1343-1415.
doi: 10.1007/s00039-007-0619-6. |
[7] |
J. Bennett, A. Carbery, M. Christ and T. Tao,
Finite bounds for Hölder-Brascamp-Lieb multilinear inequalities, Math. Res. Lett., 17 (2010), 647-666.
doi: 10.4310/MRL.2010.v17.n4.a6. |
[8] |
J. Bennett, A. Carbery and T. Tao,
On the multilinear restriction and Kakeya conjectures, Acta Math., 196 (2006), 261-302.
doi: 10.1007/s11511-006-0006-4. |
[9] |
H. J. Brascamp and E. H. Lieb,
Best constants in Young's inequality, its converse, and its generalization to more than three functions, Adv. Math., 20 (1976), 151-173.
doi: 10.1016/0001-8708(76)90184-5. |
[10] |
R. M. Brown,
Estimates for the scattering map associated with a two-dimensional first-order system, J. Nonlinear Sci., 11 (2001), 459-471.
doi: 10.1007/s00332-001-0394-8. |
[11] |
E. A. Carlen, E. H. Lieb and M. Loss,
A sharp analog of Young's inequality on $S^N$ and related entropy inequalities, Jour. Geom. Anal., 14 (2004), 487-520.
doi: 10.1007/BF02922101. |
[12] |
F. Castella and B. Perthame,
Estimations de Strichartz pour les équations de transport cinétique, C. R. Acad. Sci. Paris Sér. I Math., 332 (1996), 535-540.
|
[13] |
M. Christ,
On the restriction of the Fourier transform to curves: Endpoint results and the degenerate case, Trans. Amer. Math. Soc., 287 (1985), 223-238.
doi: 10.1090/S0002-9947-1985-0766216-6. |
[14] |
G. P. Curbera, J. Garcá-Cuerva, J. María Martell and C. Pérez,
Extrapolation with weights, rearrangement-invariant function spaces, modular inequalities and applications to singular integrals, Adv. Math., 203 (2006), 256-318.
doi: 10.1016/j.aim.2005.04.009. |
[15] |
Z. Guo and L. Peng,
Endpoint Strichartz estimate for the kinetic transport equation in one dimension, C. R. Math. Acad. Sci. Paris, 345 (2007), 253-256.
doi: 10.1016/j.crma.2007.07.002. |
[16] |
L. Guth,
The endpoint case in the Bennett-Carbery-Tao multilinear Kakeya conjecture, Acta Math., 205 (2010), 263-286.
doi: 10.1007/s11511-010-0055-6. |
[17] |
M. Keel and T. Tao,
Endpoint Strichartz estimates, Amer. J. Math., 120 (1998), 955-980.
doi: 10.1353/ajm.1998.0039. |
[18] |
E. H. Lieb,
Gaussian kernels have only Gaussian maximizers, Invent. Math., 102 (1990), 179-208.
doi: 10.1007/BF01233426. |
[19] |
Z. Nie and R. M. Brown,
Estimates for a family of multi-linear forms, J. Math. Anal. Appl., 377 (2011), 79-87.
doi: 10.1016/j.jmaa.2010.09.070. |
[20] |
R. O'Neil,
Convolution operators and $L(p, q)$ spaces, Duke Math. J., 30 (1963), 129-142.
doi: 10.1215/S0012-7094-63-03015-1. |
[21] |
E. Ovcharov,
Counterexamples to Strichartz estimates for the kinetic transport equation based on Besicovitch sets, Nonlinear Anal., 74 (2011), 2515-2522.
doi: 10.1016/j.na.2010.12.007. |
[22] |
E. Ovcharov,
Strichartz estimates for the kinetic transport equation, SIAM J. Math. Anal., 43 (2011), 1282-1310.
doi: 10.1137/100803808. |
[23] |
P. Perry,
Global well-posedness and long-time asymptotics for the defocussing Davey-Stewartson Ⅱ equation in $H^{1, 1}(\mathbb{C})$, J. Spectral Theory, 6 (2016), 429-481.
doi: 10.4171/JST/129. |
[24] |
R. Quilodrán,
On extremizing sequences for the adjoint restriction inequality on the cone, J. Lond. Math. Soc., 87 (2013), 223-246.
doi: 10.1112/jlms/jds046. |
[25] |
E. M. Stein and G. Weiss,
Introduction to Fourier Analysis on Euclidean Spaces, Princeton Mathematical Series, No. 32, Princeton University Press, 1971. |
[26] |
S. I. Valdimarsson,
Optimisers for the Brascamp-Lieb inequality, Israel J. Math., 168 (2008), 253-274.
doi: 10.1007/s11856-008-1067-1. |
show all references
References:
[1] |
K. Astala, D. Faraco and K. Rogers,
On Plancherel's identity for a 2D scattering transform, Nonlinearity, 28 (2015), 2721-2729.
doi: 10.1088/0951-7715/28/8/2721. |
[2] |
K. Ball, Volumes of sections of cubes and related problems, in Geometric Aspects
of Functional Analysis (eds. J. Lindenstrauss and V. D. Milman), Springer Lecture
Notes in Math., 1376, Springer-Verlag, 1989,251–260.
doi: 10.1007/BFb0090058. |
[3] |
F. Barthe,
On a reverse form of the Brascamp-Lieb inequality, Invent. Math., 134 (1998), 355-361.
doi: 10.1007/s002220050267. |
[4] |
J. Bennett, N. Bez, T. Flock and S. Lee, Stability of the Brascamp–Lieb constant
and applications, to appear in American Journal of Mathematics. |
[5] |
J. Bennett, N. Bez, S. Gutiérrez and S. Lee,
On the Strichartz estimates for the kinetic transport equation, Comm. Partial Differential Equations, 39 (2014), 1821-1826.
doi: 10.1080/03605302.2013.850880. |
[6] |
J. Bennett, A. Carbery, M. Christ and T. Tao,
The Brascamp-Lieb inequalities: Finiteness, structure and extremals, Geom. Funct. Anal., 17 (2008), 1343-1415.
doi: 10.1007/s00039-007-0619-6. |
[7] |
J. Bennett, A. Carbery, M. Christ and T. Tao,
Finite bounds for Hölder-Brascamp-Lieb multilinear inequalities, Math. Res. Lett., 17 (2010), 647-666.
doi: 10.4310/MRL.2010.v17.n4.a6. |
[8] |
J. Bennett, A. Carbery and T. Tao,
On the multilinear restriction and Kakeya conjectures, Acta Math., 196 (2006), 261-302.
doi: 10.1007/s11511-006-0006-4. |
[9] |
H. J. Brascamp and E. H. Lieb,
Best constants in Young's inequality, its converse, and its generalization to more than three functions, Adv. Math., 20 (1976), 151-173.
doi: 10.1016/0001-8708(76)90184-5. |
[10] |
R. M. Brown,
Estimates for the scattering map associated with a two-dimensional first-order system, J. Nonlinear Sci., 11 (2001), 459-471.
doi: 10.1007/s00332-001-0394-8. |
[11] |
E. A. Carlen, E. H. Lieb and M. Loss,
A sharp analog of Young's inequality on $S^N$ and related entropy inequalities, Jour. Geom. Anal., 14 (2004), 487-520.
doi: 10.1007/BF02922101. |
[12] |
F. Castella and B. Perthame,
Estimations de Strichartz pour les équations de transport cinétique, C. R. Acad. Sci. Paris Sér. I Math., 332 (1996), 535-540.
|
[13] |
M. Christ,
On the restriction of the Fourier transform to curves: Endpoint results and the degenerate case, Trans. Amer. Math. Soc., 287 (1985), 223-238.
doi: 10.1090/S0002-9947-1985-0766216-6. |
[14] |
G. P. Curbera, J. Garcá-Cuerva, J. María Martell and C. Pérez,
Extrapolation with weights, rearrangement-invariant function spaces, modular inequalities and applications to singular integrals, Adv. Math., 203 (2006), 256-318.
doi: 10.1016/j.aim.2005.04.009. |
[15] |
Z. Guo and L. Peng,
Endpoint Strichartz estimate for the kinetic transport equation in one dimension, C. R. Math. Acad. Sci. Paris, 345 (2007), 253-256.
doi: 10.1016/j.crma.2007.07.002. |
[16] |
L. Guth,
The endpoint case in the Bennett-Carbery-Tao multilinear Kakeya conjecture, Acta Math., 205 (2010), 263-286.
doi: 10.1007/s11511-010-0055-6. |
[17] |
M. Keel and T. Tao,
Endpoint Strichartz estimates, Amer. J. Math., 120 (1998), 955-980.
doi: 10.1353/ajm.1998.0039. |
[18] |
E. H. Lieb,
Gaussian kernels have only Gaussian maximizers, Invent. Math., 102 (1990), 179-208.
doi: 10.1007/BF01233426. |
[19] |
Z. Nie and R. M. Brown,
Estimates for a family of multi-linear forms, J. Math. Anal. Appl., 377 (2011), 79-87.
doi: 10.1016/j.jmaa.2010.09.070. |
[20] |
R. O'Neil,
Convolution operators and $L(p, q)$ spaces, Duke Math. J., 30 (1963), 129-142.
doi: 10.1215/S0012-7094-63-03015-1. |
[21] |
E. Ovcharov,
Counterexamples to Strichartz estimates for the kinetic transport equation based on Besicovitch sets, Nonlinear Anal., 74 (2011), 2515-2522.
doi: 10.1016/j.na.2010.12.007. |
[22] |
E. Ovcharov,
Strichartz estimates for the kinetic transport equation, SIAM J. Math. Anal., 43 (2011), 1282-1310.
doi: 10.1137/100803808. |
[23] |
P. Perry,
Global well-posedness and long-time asymptotics for the defocussing Davey-Stewartson Ⅱ equation in $H^{1, 1}(\mathbb{C})$, J. Spectral Theory, 6 (2016), 429-481.
doi: 10.4171/JST/129. |
[24] |
R. Quilodrán,
On extremizing sequences for the adjoint restriction inequality on the cone, J. Lond. Math. Soc., 87 (2013), 223-246.
doi: 10.1112/jlms/jds046. |
[25] |
E. M. Stein and G. Weiss,
Introduction to Fourier Analysis on Euclidean Spaces, Princeton Mathematical Series, No. 32, Princeton University Press, 1971. |
[26] |
S. I. Valdimarsson,
Optimisers for the Brascamp-Lieb inequality, Israel J. Math., 168 (2008), 253-274.
doi: 10.1007/s11856-008-1067-1. |
[1] |
Paolo Maremonti. A remark on the Stokes problem in Lorentz spaces. Discrete and Continuous Dynamical Systems - S, 2013, 6 (5) : 1323-1342. doi: 10.3934/dcdss.2013.6.1323 |
[2] |
Lucas C. F. Ferreira, Jhean E. Pérez-López, Élder J. Villamizar-Roa. On the product in Besov-Lorentz-Morrey spaces and existence of solutions for the stationary Boussinesq equations. Communications on Pure and Applied Analysis, 2018, 17 (6) : 2423-2439. doi: 10.3934/cpaa.2018115 |
[3] |
Kazuhiro Ishige, Yujiro Tateishi. Decay estimates for Schrödinger heat semigroup with inverse square potential in Lorentz spaces II. Discrete and Continuous Dynamical Systems, 2022, 42 (1) : 369-401. doi: 10.3934/dcds.2021121 |
[4] |
Ren-You Zhong, Nan-Jing Huang. Strict feasibility for generalized mixed variational inequality in reflexive Banach spaces. Numerical Algebra, Control and Optimization, 2011, 1 (2) : 261-274. doi: 10.3934/naco.2011.1.261 |
[5] |
Manuel Gutiérrez. Lorentz geometry technique in nonimaging optics. Conference Publications, 2003, 2003 (Special) : 386-392. doi: 10.3934/proc.2003.2003.386 |
[6] |
Giovanni Cupini, Eugenio Vecchi. Faber-Krahn and Lieb-type inequalities for the composite membrane problem. Communications on Pure and Applied Analysis, 2019, 18 (5) : 2679-2691. doi: 10.3934/cpaa.2019119 |
[7] |
Matthew Rosenzweig. The mean-field limit of the Lieb-Liniger model. Discrete and Continuous Dynamical Systems, 2022, 42 (6) : 3005-3037. doi: 10.3934/dcds.2022006 |
[8] |
Francis Akutsah, Akindele Adebayo Mebawondu, Hammed Anuoluwapo Abass, Ojen Kumar Narain. A self adaptive method for solving a class of bilevel variational inequalities with split variational inequality and composed fixed point problem constraints in Hilbert spaces. Numerical Algebra, Control and Optimization, 2021 doi: 10.3934/naco.2021046 |
[9] |
Shaotao Hu, Yuanheng Wang, Bing Tan, Fenghui Wang. Inertial iterative method for solving variational inequality problems of pseudo-monotone operators and fixed point problems of nonexpansive mappings in Hilbert spaces. Journal of Industrial and Management Optimization, 2022 doi: 10.3934/jimo.2022060 |
[10] |
Habib ur Rehman, Poom Kumam, Yusuf I. Suleiman, Widaya Kumam. An adaptive block iterative process for a class of multiple sets split variational inequality problems and common fixed point problems in Hilbert spaces. Numerical Algebra, Control and Optimization, 2022 doi: 10.3934/naco.2022007 |
[11] |
Françoise Pène. Asymptotic of the number of obstacles visited by the planar Lorentz process. Discrete and Continuous Dynamical Systems, 2009, 24 (2) : 567-587. doi: 10.3934/dcds.2009.24.567 |
[12] |
Mark F. Demers, Hong-Kun Zhang. Spectral analysis of the transfer operator for the Lorentz gas. Journal of Modern Dynamics, 2011, 5 (4) : 665-709. doi: 10.3934/jmd.2011.5.665 |
[13] |
Françoise Pène. Self-intersections of trajectories of the Lorentz process. Discrete and Continuous Dynamical Systems, 2014, 34 (11) : 4781-4806. doi: 10.3934/dcds.2014.34.4781 |
[14] |
Junjie Zhang, Shenzhou Zheng. Weighted lorentz estimates for nondivergence linear elliptic equations with partially BMO coefficients. Communications on Pure and Applied Analysis, 2017, 16 (3) : 899-914. doi: 10.3934/cpaa.2017043 |
[15] |
A. Carati. On the existence of scattering solutions for the Abraham-Lorentz-Dirac equation. Discrete and Continuous Dynamical Systems - B, 2006, 6 (3) : 471-480. doi: 10.3934/dcdsb.2006.6.471 |
[16] |
Shuang Liang, Shenzhou Zheng. Variable lorentz estimate for stationary stokes system with partially BMO coefficients. Communications on Pure and Applied Analysis, 2019, 18 (6) : 2879-2903. doi: 10.3934/cpaa.2019129 |
[17] |
Siyuan Tang. New time-changes of unipotent flows on quotients of Lorentz groups. Journal of Modern Dynamics, 2022, 18: 13-67. doi: 10.3934/jmd.2022002 |
[18] |
François Golse. The Boltzmann-Grad limit for the Lorentz gas with a Poisson distribution of obstacles. Kinetic and Related Models, 2022, 15 (3) : 517-534. doi: 10.3934/krm.2022001 |
[19] |
Jorge A. Becerril, Javier F. Rosenblueth. Necessity for isoperimetric inequality constraints. Discrete and Continuous Dynamical Systems, 2017, 37 (3) : 1129-1158. doi: 10.3934/dcds.2017047 |
[20] |
Gisella Croce, Bernard Dacorogna. On a generalized Wirtinger inequality. Discrete and Continuous Dynamical Systems, 2003, 9 (5) : 1329-1341. doi: 10.3934/dcds.2003.9.1329 |
2020 Impact Factor: 0.929
Tools
Metrics
Other articles
by authors
[Back to Top]