\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Fredholm criteria for pseudodifferential operators and induced representations of groupoid algebras

Manuscripts available from http://iecl.univ-lorraine.fr/ Victor.Nistor.
Carvalho was partially supported by Fundação para a Ciência e a Tecnologia (Portugal) UID/MAT/04721/2013.
Nistor has been partially supported by ANR-14-CE25-0012-01 (SINGSTAR)..

Qiao was partially supported by NSF of China (11301317,11571211).
Abstract Full Text(HTML) Related Papers Cited by
  • We characterize the groupoids for which an operator is Fredholm if and only if its principal symbol and all its boundary restrictions are invertible. A groupoid with this property is called Fredholm. Using results on the Effros-Hahn conjecture, we show that an almost amenable, Hausdorff, second countable groupoid is Fredholm. Many groupoids, and hence many pseudodifferential operators appearing in practice, fit into this framework. In particular, one can use these results to characterize the Fredholm operators on manifolds with cylindrical and poly-cylindrical ends, on manifolds that are asymptotically Euclidean or asymptotically hyperbolic, on products of such manifolds, and on many other non-compact manifolds. Moreover, we show that the desingularization of groupoids preserves the class of Fredholm groupoids.

    Mathematics Subject Classification: 46L05(primary), 45B05, 47L80, 58J40, 46N20.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • [1] B. AmmannA. D. Ionescu and V. Nistor, Sobolev spaces on Lie manifolds and regularity for polyhedral domains, Doc. Math., 11 (2006), 161-206 (electronic). 
    [2] B. AmmannR. Lauter and V. Nistor, Pseudodifferential operators on manifolds with a Lie structure at infinity, Ann. of Math., 165 (2007), 717-747.  doi: 10.4007/annals.2007.165.717.
    [3] I. Androulidakis and G. Skandalis, Pseudodifferential calculus on a singular foliation, J. Noncommut. Geom., 5 (2011), 125-152.  doi: 10.4171/JNCG/72.
    [4] C. Carvalho, V. Nistor and Yu Qiao, Fredholm conditions on non-compact manifolds: Theory and examples, ArXiv and Hal preprint 2017, submitted.
    [5] S. Echterhoff, The primitive ideal space of twisted covariant systems with continuously varying stabilizers, Math. Ann., 292 (1992), 59-84.  doi: 10.1007/BF01444609.
    [6] R. Exel, Invertibility in groupoid $C^*$-algebras, in Operator Theory, Operator Algebras and Applications, Oper. Theory Adv. Appl., 242, Birkhäuser/Springer, Basel, 2014,173–183. doi: 10.1007/978-3-0348-0816-3_9.
    [7] E. Gootman and J. Rosenberg, The structure of crossed product $C^{*} $ -algebras: a proof of the generalized Effros-Hahn conjecture, Invent. Math., 52 (1979), 283-298.  doi: 10.1007/BF01389885.
    [8] N. Groẞe and C. Schneider, Sobolev spaces on Riemannian manifolds with bounded geometry: general coordinates and traces, Math. Nachr., 286 (2013), 1586-1613.  doi: 10.1002/mana.201300007.
    [9] M. Ionescu and D. Williams, The generalized Effros-Hahn conjecture for groupoids, Indiana Univ. Math. J., 58 (2009), 2489-2508.  doi: 10.1512/iumj.2009.58.3746.
    [10] M. Ionescu and D. Williams, Irreducible representations of groupoid $C^*$ -algebras, Proc. Amer. Math. Soc., 137 (2009), 1323-1332.  doi: 10.1090/S0002-9939-08-09782-7.
    [11] M. Khoshkam and G. Skandalis, Regular representation of groupoid $C^*$ -algebras and applications to inverse semigroups, J. Reine Angew. Math., 546 (2002), 47-72.  doi: 10.1515/crll.2002.045.
    [12] R. LauterB. Monthubert and V. Nistor, Pseudodifferential analysis on continuous family groupoids, Doc. Math., 5 (2000), 625-655 (electronic). 
    [13] R. Lauter and V. Nistor, Analysis of geometric operators on open manifolds: A groupoid approach, in Quantization of Singular Symplectic Quotients, Progr. Math., 198, Birkhäuser, Basel, 2001,181–229.
    [14] K. Mackenzie, General Theory of Lie Groupoids and Lie Algebroids, volume 213 of LMS Lect. Note Series, Cambridge U. Press, Cambridge, 2005. doi: 10.1017/CBO9781107325883.
    [15] I. Moerdijk and J. Mrčun, On integrability of infinitesimal actions, Amer. J. Math., 124 (2002), 567-593.  doi: 10.1353/ajm.2002.0019.
    [16] B. Monthubert, Pseudodifferential calculus on manifolds with corners and groupoids, Proc. Amer. Math. Soc., 127 (1999), 2871-2881.  doi: 10.1090/S0002-9939-99-04850-9.
    [17] P. S. MuhlyJ. Renault and D. Williams, Continuous-trace groupoid $C^*$ -algebras. Ⅲ, Trans. Amer. Math. Soc., 348 (1996), 3621-3641.  doi: 10.1090/S0002-9947-96-01610-8.
    [18] V. Nistor, Desingularization of Lie groupoids and pseudodifferential operators on singular spaces, to appear in Communications in Analysis and Geometry, arXiv: 1512.08613 [math. DG].
    [19] V. Nistor and N. Prudhon, Exhausting families of representations and spectra of pseudodifferential operators, to appear in J. Oper. Theory, arXiv: 1411.7921 [math. OA].
    [20] V. NistorA. Weinstein and P. Xu, Pseudodifferential operators on differential groupoids, Pacific J. Math., 189 (1999), 117-152.  doi: 10.2140/pjm.1999.189.117.
    [21] J. Renault, A Groupoid Approach to $C^{*} $ -Algebras Lecture Notes in Mathematics, 793, Springer, Berlin, 1980.
    [22] J. Renault, Représentation des produits croisés d'algébres de groupoïdes, J. Operator Theory, 18 (1987), 67-97. 
    [23] J. Renault, The ideal structure of groupoid crossed product $C^*$-$ algebras, J. Operator Theory, 25 (1991), 3-36. 
    [24] J. Renault, Topological amenability is a Borel property, Math. Scand., 117 (2015), 5-30.  doi: 10.7146/math.scand.a-22235.
    [25] S. Roch, Algebras of approximation sequences: structure of fractal algebras, in Singular Integral Operators, Factorization and Applications, Oper. Theory Adv. Appl., 142, Birkhäuser, Basel, 2003,287–310.
    [26] A. Sims and D. Williams, Amenability for Fell bundles over groupoids, Illinois J. Math., 57 (2013), 429-444. 
    [27] E. Van Erp and R. Yuncken, A groupoid approach to pseudodifferential operators, arXiv: 1511.01041 [math. DG], 2015.
    [28] D. Williams, Crossed Products of $C{^*}$ -Algebras, Mathematical Surveys and Monographs, 134, American Mathematical Society, Providence, RI, 2007. doi: 10.1090/surv/134.
  • 加载中
SHARE

Article Metrics

HTML views(1817) PDF downloads(270) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return