Consider a compact Riemannian manifold with boundary. In this short note we prove that under certain positive curvature assumptions on the manifold and its boundary the Steklov eigenvalues of the manifold are controlled by the Laplace eigenvalues of the boundary. Additionally, in two dimensions we obtain an upper bound for Steklov eigenvalues in terms of topology of the surface without any curvature restrictions.
Citation: |
[1] |
M. Belishev and V. Sharafutdinov, Dirichlet to Neumann operator on differential forms, Bull. Sci. Math., 132 (2008), 128-145.
doi: 10.1016/j.bulsci.2006.11.003.![]() ![]() ![]() |
[2] |
I. Chavel,
Riemannian Geometry, A Modern Introduction, 2nd edition, Cambridge University Press, New York, 2006.
doi: 10.1017/CBO9780511616822.![]() ![]() ![]() |
[3] |
A. Fraser and R. Schoen, The first Steklov eigenvalue, conformal geometry, and minimal
surfaces, Adv. Math., 226 (2011), 4011-4030.
doi: 10.1016/j.aim.2010.11.007.![]() ![]() ![]() |
[4] |
A. Fraser and R. Schoen, Sharp eigenvalue bounds and minimal surfaces in the ball, Inventiones mathematicae, 203 (2016), 823-890.
doi: 10.1007/s00222-015-0604-x.![]() ![]() ![]() |
[5] |
A. Girouard, L. Parnovski, I. Polterovich and D. Sher, The Steklov spectrum of surfaces:
Asymptotics and invariants, Math. Proc. Camb. Phil. Soc., 157 (2014), 379-389.
doi: 10.1017/S030500411400036X.![]() ![]() ![]() |
[6] |
A. Girouard and I. Polterovich, Spectral geometry of the Steklov problem, J. of Spectral Theory, 7 (2017), 321-359.
doi: 10.4171/JST/164.![]() ![]() ![]() |
[7] |
A. Girouard and I. Polterovich, Upper bounds for Steklov eigenvalues on surfaces, Electron. Res. Announc. Math. Sci., 19 (2012), 77-85.
doi: 10.3934/era.2012.19.77.![]() ![]() ![]() |
[8] |
A. Hassannezhad, Conformal upper bounds for the eigenvalues of the Laplacian and Steklov
problem, J. of Functional Analysis, 261 (2011), 3419-3436.
doi: 10.1016/j.jfa.2011.08.003.![]() ![]() ![]() |
[9] |
J Hersch, L. Payne and M. Schiffer, Some inequalities for Stekloff eigenvalues, Arch. Rational Mech. Anal., 57 (1975), 99-114.
doi: 10.1007/BF00248412.![]() ![]() ![]() |
[10] |
M. S. Joshi and W. R. B. Lionheart, An inverse boundary value problem for harmonic differential forms, Asymptot. Anal., 41 (2005), 93-106.
![]() ![]() |
[11] |
M. Karpukhin,
Steklov problem on differential forms, Preprint, arXiv: 1705.08951.
![]() |
[12] |
G. Kokarev, Variational aspects of Laplace eigenvalues on Riemannian surfaces, Adv. Math., 258 (2014), 191-239.
doi: 10.1016/j.aim.2014.03.006.![]() ![]() ![]() |
[13] |
P. Petersen,
Demystifying the Weitzenböck curvature operator Preprint available from: http://www.math.ucla.edu/~petersen/.
![]() |
[14] |
S. Raulot and A. Savo, On the first eigenvalue of the Dirichlet-to-Neumann operator on forms, J. of Functional Analysis, 262 (2012), 889-914.
doi: 10.1016/j.jfa.2011.10.008.![]() ![]() ![]() |
[15] |
G. Schwarz, Hodge Decomposition – A Method for Solving Boundary Value Problems, Lecture
Notes in Math., Springer, (1995).
doi: 10.1007/BFb0095978.![]() ![]() ![]() |
[16] |
V. Sharafutdinov and C. Shonkwiler, The complete Dirichlet-to-Neumann map for differential
forms, J. Geom. Anal., 23 (2013), 2063-2080.
doi: 10.1007/s12220-012-9320-6.![]() ![]() ![]() |
[17] |
Q. Wang and C. Xia, Sharp bounds for the first non-zero Stekloff eigenvalues, J. of Functional Analysis, 257 (2009), 2635-2644.
doi: 10.1016/j.jfa.2009.06.008.![]() ![]() ![]() |
[18] |
C. Xia, Rigidity for compact manifolds with boundary and non-negative Ricci curvature, Proc. Amer. Math. Soc., 125 (1997), 1801-1806.
doi: 10.1090/S0002-9939-97-04078-1.![]() ![]() ![]() |
[19] |
L. Yang and C. Yu, A higher dimensional generalization of Hersch-Payne-Schiffer inequality for Steklov eigenvalues, J. of Functional Analysis, 272 (2017), 4122-4130.
doi: 10.1016/j.jfa.2017.02.023.![]() ![]() ![]() |