
-
Previous Article
Signatures, sums of hermitian squares and positive cones on algebras with involution
- ERA-MS Home
- This Volume
-
Next Article
Zermelo deformation of finsler metrics by killing vector fields
Hyperbolic dynamics of discrete dynamical systems on pseudo-riemannian manifolds
Mahani Mathematical Research Center, Shahid Bahonar University of Kerman, Kerman, Iran |
We consider a discrete dynamical system on a pseudo-Riemannian manifold and we determine the concept of a hyperbolic set for it. We insert a condition in the definition of a hyperbolic set which implies to the unique decomposition of a part of tangent space (at each point of this set) to two unstable and stable subspaces with exponentially increasing and exponentially decreasing dynamics on them. We prove the continuity of this decomposition via the metric created by a torsion-free pseudo-Riemannian connection. We present a global attractor for a diffeomorphism on an open submanifold of the hyperbolic space $H^2(1)$ which is not a hyperbolic set for it.
References:
[1] |
V. M. Alekseev and M. Yakobson,
Symbolic dynamics and hyperbolic dynamical systems, Phys. Rep., 75 (1981), 287-325.
doi: 10.1016/0370-1573(81)90186-1. |
[2] |
V. Araujo and M. Viana, Hyperbolic dynamical systems, in Mathematics of Complexity and Dynamical Systems, Vols. 13, Springer, New York, 2012, 740-754. |
[3] |
C. Bona and J. Massó,
Hyperbolic evolution system for numerical relativity, Phys. Rev. Lett., 68 (1992), 1097-1099.
doi: 10.1103/PhysRevLett.68.1097. |
[4] |
Y. Choquet-Bruhat and T. Ruggeri,
Hyperbolicity of the 3+1 system of Einstein equations, Commun. Math. Phys., 89 (1983), 269-275.
doi: 10.1007/BF01211832. |
[5] |
A. Gogolev,
Bootstrap for local rigidity of Anosov automorphisms on the 3-torus, Commun. Math. Phys., 352 (2017), 439-455.
doi: 10.1007/s00220-017-2863-4. |
[6] |
J. S. Hadamard, Sur l'it$\acute{e}ration$ et les solutions asymptotiques des équations différentielles, Bulletin de la Société Mathématique de France, 29 (1901), 224-228. Google Scholar |
[7] |
B. Hasselblatt, Hyperbolic dynamical systems, in Handbook of Dynamical Systems, Vol. 1A, North-Holland, Amsterdam, 2002, 239-319.
doi: 10.1016/S1874-575X(02)80005-4. |
[8] |
S. W. Hawking and G. F. R. Ellis, The Large Scale Structure of Space-Time, Cambridge Monographs on Mathematical Physics, No. 1, Cambridge University Press, London-New York, 1973. |
[9] |
A. Mukherjee, Differential Topology, Springer International Publishing AG Switzerland, 2015
doi: 10.1007/978-3-319-19045-7. |
[10] |
J. Palis Jr and W. de Melo, Geometric Theory of Dynamical Systems. An Introduction, Springer-Verlag, New York-Berlin, 1982.
![]() |
[11] |
J. Palis and F. Takens, Hyperbolicity and Sensitive Chaotic Dynamics at Homoclinic Bifurcations. Fractal Dimensions and Infinitely Many Attractors, Cambridge Studies in Advanced Mathematics, 35, Cambridge University Press, Cambridge, 1993. |
[12] |
H. Poincaré, Sur le probléme des trois corps et les equations de la dynamique, Acta Mathematica, 13 (1890), 1-270. Google Scholar |
[13] |
C. Ragazzo and L. S. Ruiz,
Dynamics of an isolated, viscoelastic, self-gravitating body, Celestial Mech. Dynam. Astronom., 122 (2015), 303-332.
doi: 10.1007/s10569-015-9620-9. |
[14] |
S. Smale,
Differentiable dynamical systems, Bull. Amer. Math. Soc., 73 (1967), 747-817.
doi: 10.1090/S0002-9904-1967-11798-1. |
[15] |
R. Yang and J. Qi,
Dynamics of generalized tachyon field, Eur. Phys. J. C, 72 (2012), 2095.
doi: 10.1140/epjc/s10052-012-2095-x. |
show all references
References:
[1] |
V. M. Alekseev and M. Yakobson,
Symbolic dynamics and hyperbolic dynamical systems, Phys. Rep., 75 (1981), 287-325.
doi: 10.1016/0370-1573(81)90186-1. |
[2] |
V. Araujo and M. Viana, Hyperbolic dynamical systems, in Mathematics of Complexity and Dynamical Systems, Vols. 13, Springer, New York, 2012, 740-754. |
[3] |
C. Bona and J. Massó,
Hyperbolic evolution system for numerical relativity, Phys. Rev. Lett., 68 (1992), 1097-1099.
doi: 10.1103/PhysRevLett.68.1097. |
[4] |
Y. Choquet-Bruhat and T. Ruggeri,
Hyperbolicity of the 3+1 system of Einstein equations, Commun. Math. Phys., 89 (1983), 269-275.
doi: 10.1007/BF01211832. |
[5] |
A. Gogolev,
Bootstrap for local rigidity of Anosov automorphisms on the 3-torus, Commun. Math. Phys., 352 (2017), 439-455.
doi: 10.1007/s00220-017-2863-4. |
[6] |
J. S. Hadamard, Sur l'it$\acute{e}ration$ et les solutions asymptotiques des équations différentielles, Bulletin de la Société Mathématique de France, 29 (1901), 224-228. Google Scholar |
[7] |
B. Hasselblatt, Hyperbolic dynamical systems, in Handbook of Dynamical Systems, Vol. 1A, North-Holland, Amsterdam, 2002, 239-319.
doi: 10.1016/S1874-575X(02)80005-4. |
[8] |
S. W. Hawking and G. F. R. Ellis, The Large Scale Structure of Space-Time, Cambridge Monographs on Mathematical Physics, No. 1, Cambridge University Press, London-New York, 1973. |
[9] |
A. Mukherjee, Differential Topology, Springer International Publishing AG Switzerland, 2015
doi: 10.1007/978-3-319-19045-7. |
[10] |
J. Palis Jr and W. de Melo, Geometric Theory of Dynamical Systems. An Introduction, Springer-Verlag, New York-Berlin, 1982.
![]() |
[11] |
J. Palis and F. Takens, Hyperbolicity and Sensitive Chaotic Dynamics at Homoclinic Bifurcations. Fractal Dimensions and Infinitely Many Attractors, Cambridge Studies in Advanced Mathematics, 35, Cambridge University Press, Cambridge, 1993. |
[12] |
H. Poincaré, Sur le probléme des trois corps et les equations de la dynamique, Acta Mathematica, 13 (1890), 1-270. Google Scholar |
[13] |
C. Ragazzo and L. S. Ruiz,
Dynamics of an isolated, viscoelastic, self-gravitating body, Celestial Mech. Dynam. Astronom., 122 (2015), 303-332.
doi: 10.1007/s10569-015-9620-9. |
[14] |
S. Smale,
Differentiable dynamical systems, Bull. Amer. Math. Soc., 73 (1967), 747-817.
doi: 10.1090/S0002-9904-1967-11798-1. |
[15] |
R. Yang and J. Qi,
Dynamics of generalized tachyon field, Eur. Phys. J. C, 72 (2012), 2095.
doi: 10.1140/epjc/s10052-012-2095-x. |
[1] |
David M. A. Stuart. Solitons on pseudo-Riemannian manifolds: stability and motion. Electronic Research Announcements, 2000, 6: 75-89. |
[2] |
Alexander Nabutovsky and Regina Rotman. Lengths of geodesics between two points on a Riemannian manifold. Electronic Research Announcements, 2007, 13: 13-20. |
[3] |
Aylin Aydoğdu, Sean T. McQuade, Nastassia Pouradier Duteil. Opinion Dynamics on a General Compact Riemannian Manifold. Networks & Heterogeneous Media, 2017, 12 (3) : 489-523. doi: 10.3934/nhm.2017021 |
[4] |
Saikat Mazumdar. Struwe's decomposition for a polyharmonic operator on a compact Riemannian manifold with or without boundary. Communications on Pure & Applied Analysis, 2017, 16 (1) : 311-330. doi: 10.3934/cpaa.2017015 |
[5] |
Shengbing Deng, Zied Khemiri, Fethi Mahmoudi. On spike solutions for a singularly perturbed problem in a compact riemannian manifold. Communications on Pure & Applied Analysis, 2018, 17 (5) : 2063-2084. doi: 10.3934/cpaa.2018098 |
[6] |
Erwann Delay, Pieralberto Sicbaldi. Extremal domains for the first eigenvalue in a general compact Riemannian manifold. Discrete & Continuous Dynamical Systems - A, 2015, 35 (12) : 5799-5825. doi: 10.3934/dcds.2015.35.5799 |
[7] |
Anna Maria Candela, J.L. Flores, M. Sánchez. A quadratic Bolza-type problem in a non-complete Riemannian manifold. Conference Publications, 2003, 2003 (Special) : 173-181. doi: 10.3934/proc.2003.2003.173 |
[8] |
Stefanie Hittmeyer, Bernd Krauskopf, Hinke M. Osinga, Katsutoshi Shinohara. How to identify a hyperbolic set as a blender. Discrete & Continuous Dynamical Systems - A, 2020, 40 (12) : 6815-6836. doi: 10.3934/dcds.2020295 |
[9] |
Zheng Yin, Ercai Chen. Conditional variational principle for the irregular set in some nonuniformly hyperbolic systems. Discrete & Continuous Dynamical Systems - A, 2016, 36 (11) : 6581-6597. doi: 10.3934/dcds.2016085 |
[10] |
Marian Gidea, Rafael de la Llave, Tere M. Seara. A general mechanism of instability in Hamiltonian systems: Skipping along a normally hyperbolic invariant manifold. Discrete & Continuous Dynamical Systems - A, 2020, 40 (12) : 6795-6813. doi: 10.3934/dcds.2020166 |
[11] |
Erchuan Zhang, Lyle Noakes. Riemannian cubics and elastica in the manifold $ \operatorname{SPD}(n) $ of all $ n\times n $ symmetric positive-definite matrices. Journal of Geometric Mechanics, 2019, 11 (2) : 277-299. doi: 10.3934/jgm.2019015 |
[12] |
E. Camouzis, H. Kollias, I. Leventides. Stable manifold market sequences. Journal of Dynamics & Games, 2018, 5 (2) : 165-185. doi: 10.3934/jdg.2018010 |
[13] |
Camillo De Lellis, Emanuele Spadaro. Center manifold: A case study. Discrete & Continuous Dynamical Systems - A, 2011, 31 (4) : 1249-1272. doi: 10.3934/dcds.2011.31.1249 |
[14] |
Zhiguo Feng, Ka-Fai Cedric Yiu. Manifold relaxations for integer programming. Journal of Industrial & Management Optimization, 2014, 10 (2) : 557-566. doi: 10.3934/jimo.2014.10.557 |
[15] |
Lan Wen. On the preperiodic set. Discrete & Continuous Dynamical Systems - A, 2000, 6 (1) : 237-241. doi: 10.3934/dcds.2000.6.237 |
[16] |
Franz W. Kamber and Peter W. Michor. The flow completion of a manifold with vector field. Electronic Research Announcements, 2000, 6: 95-97. |
[17] |
Claudia Valls. The Boussinesq system:dynamics on the center manifold. Communications on Pure & Applied Analysis, 2005, 4 (4) : 839-860. doi: 10.3934/cpaa.2005.4.839 |
[18] |
Hongyu Cheng, Rafael de la Llave. Time dependent center manifold in PDEs. Discrete & Continuous Dynamical Systems - A, 2020, 40 (12) : 6709-6745. doi: 10.3934/dcds.2020213 |
[19] |
François Berteloot, Tien-Cuong Dinh. The Mandelbrot set is the shadow of a Julia set. Discrete & Continuous Dynamical Systems - A, 2020, 40 (12) : 6611-6633. doi: 10.3934/dcds.2020262 |
[20] |
YanYan Li, Tonia Ricciardi. A sharp Sobolev inequality on Riemannian manifolds. Communications on Pure & Applied Analysis, 2003, 2 (1) : 1-31. doi: 10.3934/cpaa.2003.2.1 |
2019 Impact Factor: 0.5
Tools
Metrics
Other articles
by authors
[Back to Top]