-
Previous Article
On the torsion in the center conjecture
- ERA-MS Home
- This Volume
-
Next Article
Hyperbolic dynamics of discrete dynamical systems on pseudo-riemannian manifolds
Signatures, sums of hermitian squares and positive cones on algebras with involution
School of Mathematics and Statistics, University College Dublin, Belfield, Dublin 4, Ireland |
We provide a coherent picture of our efforts thus far in extending real algebra and its links to the theory of quadratic forms over ordered fields in the noncommutative direction, using hermitian forms and "ordered" algebras with involution.
References:
[1] |
A. A. Albert, Involutorial simple algebras and real Riemann matrices, Ann. of Math. (2), 36(1935), 886–964.
doi: 10.2307/1968595. |
[2] |
E. Artin,
Über die Zerlegung definiter Funktionen in Quadrate, Abh. Math. Sem. Univ. Hamburg, 5 (1927), 100-115.
doi: 10.1007/BF02952513. |
[3] |
E. Artin and O. Schreier,
Algebraische Konstruktion reeller Körper, Abh. Math. Sem. Univ. Hamburg, 5 (1927), 85-99.
doi: 10.1007/BF02952512. |
[4] |
V. Astier and T. Unger,
Signatures of hermitian forms and the Knebusch trace formula, Math. Ann., 358 (2014), 925-947.
doi: 10.1007/s00208-013-0977-3. |
[5] |
V. Astier and T. Unger,
Signatures of hermitian forms and "prime ideals" of Witt groups, Adv. Math., 285 (2015), 497-514.
doi: 10.1016/j.aim.2015.07.035. |
[6] |
V. Astier and T. Unger, Positive cones on algebras with involution, preprint, 2017, arXiv: 1609.06601. Google Scholar |
[7] |
V. Astier and T. Unger, Signatures of hermitian forms, positivity, and an answer to a question of Procesi and Schacher, preprint, 2016, arXiv: 1511.06330. Google Scholar |
[8] |
V. Astier and T. Unger, Signatures, sums of hermitian squares and positive cones on algebras with involution, Séminaire de Structures Algébriques Ordonnées 2015–2016, 91 (2017). Google Scholar |
[9] |
V. Astier and T. Unger,
Stability index of algebras with involution, Contemporary Mathematics, 697 (2017), 41-50.
doi: 10.1090/conm/697/14045. |
[10] |
A. Auel, E. Brussel, S. Garibaldi and U. Vishne,
Open problems on central simple algebras, Transform. Groups, 16 (2011), 219-264.
doi: 10.1007/s00031-011-9119-8. |
[11] |
E. Bayer-Fluckiger and R. Parimala, Classical groups and the Hasse principle, Ann. of Math. (2), 147 (1998), 651–693.
doi: 10.2307/120961. |
[12] |
J. Bochnak, M. Coste and M. -F. Roy, Real Algebraic Geometry, Ergebnisse der Mathematik und ihrer Grenzgebiete (3), vol. 36, Springer-Verlag, Berlin, 1998.
doi: 10.1007/978-3-662-03718-8. |
[13] |
T. C. Craven, Orderings, valuations, and Hermitian forms over *-fields, in K-theory and Algebraic Geometry: Connections with Quadratic Forms and Division Algebras (Santa Barbara, CA, 1992), Proc. Sympos. Pure Math., 58, Part 2, American Mathematical Society, Providence, RI, (1995), 149–160. |
[14] |
T. C. Craven, Valuations and Hermitian forms on skew fields, in Valuation Theory and its Applications, Vol. I (Saskatoon, SK, 1999), Fields Inst. Commun., 32, American Mathematical Society, Providence, RI, (2002), 103–115. |
[15] |
D. Hilbert, Mathematische Probleme. Vortrag, gehalten auf dem internationalen Mathematiker-Congress zu Paris 1900, Nachr. Ges. Wiss. Göttingen, Math.-Phys. Kl., (1900), 253-297. Google Scholar |
[16] |
M. Hochster,
Prime ideal structure in commutative rings, Trans. Amer. Math. Soc., 142 (1969), 43-60.
doi: 10.1090/S0002-9947-1969-0251026-X. |
[17] |
I. Klep and T. Unger,
The Procesi-Schacher conjecture and Hilbert's 17th problem for algebras with involution, J. Algebra, 324 (2010), 256-268.
doi: 10.1016/j.jalgebra.2010.03.022. |
[18] |
M. -A. Knus,
Quadratic and Hermitian Forms Over Rings, Grundlehren der Mathematischen Wissenschaften, vol. 294, Springer-Verlag, Berlin, 1991.
doi: 10.1007/978-3-642-75401-2. |
[19] |
M. -A. Knus, A. Merkurjev, M. Rost and J. -P. Tignol, The Book of Involutions, American Mathematical Society Colloquium Publications, vol. 44, American Mathematical Society, Providence, RI, 1998.
doi: 10.1090/coll/044. |
[20] |
T. Y. Lam, An introduction to real algebra, in Ordered Fields and real Algebraic Geometry (Boulder, Colo., 1983), Rocky Mountain J. Math., 14 (1984), 767–814.
doi: 10.1216/RMJ-1984-14-4-767. |
[21] |
T. Y. Lam, Introduction to Quadratic Forms Over Fields, Graduate Studies in Mathematics, vol. 67, American Mathematical Society, Providence, RI, 2005. |
[22] |
D. W. Lewis and J.-P. Tignol,
On the signature of an involution, Arch. Math. (Basel), 60 (1993), 128-135.
doi: 10.1007/BF01199098. |
[23] |
D. W. Lewis and T. Unger,
A local-global principle for algebras with involution and Hermitian forms, Math. Z., 244 (2003), 469-477.
doi: 10.1007/s00209-003-0490-6. |
[24] |
D. W. Lewis and T. Unger,
Hermitian Morita theory: A matrix approach, Irish Math. Soc. Bull., 62 (2008), 37-41.
|
[25] |
F. Lorenz and J. Leicht,
Die Primideale des Wittschen Ringes, Invent. Math., 10 (1970), 82-88.
doi: 10.1007/BF01402972. |
[26] |
A. Pfister,
Quadratische Formen in beliebigen Körpern, Invent. Math., 1 (1966), 116-132.
doi: 10.1007/BF01389724. |
[27] |
A. Prestel,
Quadratische Semi-Ordnungen und quadratische Formen, Math. Z., 133 (1973), 319-342.
doi: 10.1007/BF01177872. |
[28] |
A. Prestel, Lectures on Formally Real Fields, Lecture Notes in Mathematics, vol. 1093, Springer-Verlag, Berlin, 1984.
doi: 10.1007/BFb0101548. |
[29] |
C. Procesi and M. Schacher, A non-commutative real Nullstellensatz and Hilbert's 17th problem, Ann. of Math. (2), 104 (1976), 395–406.
doi: 10.2307/1970962. |
[30] |
A. Quéguiner,
Signature des involutions de deuxiéme espéce, Arch. Math. (Basel), 65 (1995), 408-412.
doi: 10.1007/BF01198071. |
[31] |
W. Scharlau,
Induction theorems and the structure of the Witt group, Invent. Math., 11 (1970), 37-44.
doi: 10.1007/BF01389804. |
[32] |
W. Scharlau, Quadratic and Hermitian Forms, Grundlehren der Mathematischen Wissenschaften, vol. 270, Springer-Verlag, Berlin, 1985.
doi: 10.1007/978-3-642-69971-9. |
[33] |
J. J. Sylvester,
A demonstration of the theorem that every homogeneous quadratic polynomial is reducible by real orthogonal substitutions to the form of a sum of positive and negative squares, Philosophical Magazine, 4 (1852), 138-142.
doi: 10.1080/14786445208647087. |
[34] |
J. -P. Tignol, Algebras with involution and classical groups, in European Congress of Mathematics, Vol. II (Budapest, 1996), Progr. Math., vol. 169, Birkhäuser, Basel, (1998), 244–258. |
[35] |
A. Weil,
Algebras with involutions and the classical groups, J. Indian Math. Soc. (N.S.), 24 (1961), 589-623.
|
show all references
References:
[1] |
A. A. Albert, Involutorial simple algebras and real Riemann matrices, Ann. of Math. (2), 36(1935), 886–964.
doi: 10.2307/1968595. |
[2] |
E. Artin,
Über die Zerlegung definiter Funktionen in Quadrate, Abh. Math. Sem. Univ. Hamburg, 5 (1927), 100-115.
doi: 10.1007/BF02952513. |
[3] |
E. Artin and O. Schreier,
Algebraische Konstruktion reeller Körper, Abh. Math. Sem. Univ. Hamburg, 5 (1927), 85-99.
doi: 10.1007/BF02952512. |
[4] |
V. Astier and T. Unger,
Signatures of hermitian forms and the Knebusch trace formula, Math. Ann., 358 (2014), 925-947.
doi: 10.1007/s00208-013-0977-3. |
[5] |
V. Astier and T. Unger,
Signatures of hermitian forms and "prime ideals" of Witt groups, Adv. Math., 285 (2015), 497-514.
doi: 10.1016/j.aim.2015.07.035. |
[6] |
V. Astier and T. Unger, Positive cones on algebras with involution, preprint, 2017, arXiv: 1609.06601. Google Scholar |
[7] |
V. Astier and T. Unger, Signatures of hermitian forms, positivity, and an answer to a question of Procesi and Schacher, preprint, 2016, arXiv: 1511.06330. Google Scholar |
[8] |
V. Astier and T. Unger, Signatures, sums of hermitian squares and positive cones on algebras with involution, Séminaire de Structures Algébriques Ordonnées 2015–2016, 91 (2017). Google Scholar |
[9] |
V. Astier and T. Unger,
Stability index of algebras with involution, Contemporary Mathematics, 697 (2017), 41-50.
doi: 10.1090/conm/697/14045. |
[10] |
A. Auel, E. Brussel, S. Garibaldi and U. Vishne,
Open problems on central simple algebras, Transform. Groups, 16 (2011), 219-264.
doi: 10.1007/s00031-011-9119-8. |
[11] |
E. Bayer-Fluckiger and R. Parimala, Classical groups and the Hasse principle, Ann. of Math. (2), 147 (1998), 651–693.
doi: 10.2307/120961. |
[12] |
J. Bochnak, M. Coste and M. -F. Roy, Real Algebraic Geometry, Ergebnisse der Mathematik und ihrer Grenzgebiete (3), vol. 36, Springer-Verlag, Berlin, 1998.
doi: 10.1007/978-3-662-03718-8. |
[13] |
T. C. Craven, Orderings, valuations, and Hermitian forms over *-fields, in K-theory and Algebraic Geometry: Connections with Quadratic Forms and Division Algebras (Santa Barbara, CA, 1992), Proc. Sympos. Pure Math., 58, Part 2, American Mathematical Society, Providence, RI, (1995), 149–160. |
[14] |
T. C. Craven, Valuations and Hermitian forms on skew fields, in Valuation Theory and its Applications, Vol. I (Saskatoon, SK, 1999), Fields Inst. Commun., 32, American Mathematical Society, Providence, RI, (2002), 103–115. |
[15] |
D. Hilbert, Mathematische Probleme. Vortrag, gehalten auf dem internationalen Mathematiker-Congress zu Paris 1900, Nachr. Ges. Wiss. Göttingen, Math.-Phys. Kl., (1900), 253-297. Google Scholar |
[16] |
M. Hochster,
Prime ideal structure in commutative rings, Trans. Amer. Math. Soc., 142 (1969), 43-60.
doi: 10.1090/S0002-9947-1969-0251026-X. |
[17] |
I. Klep and T. Unger,
The Procesi-Schacher conjecture and Hilbert's 17th problem for algebras with involution, J. Algebra, 324 (2010), 256-268.
doi: 10.1016/j.jalgebra.2010.03.022. |
[18] |
M. -A. Knus,
Quadratic and Hermitian Forms Over Rings, Grundlehren der Mathematischen Wissenschaften, vol. 294, Springer-Verlag, Berlin, 1991.
doi: 10.1007/978-3-642-75401-2. |
[19] |
M. -A. Knus, A. Merkurjev, M. Rost and J. -P. Tignol, The Book of Involutions, American Mathematical Society Colloquium Publications, vol. 44, American Mathematical Society, Providence, RI, 1998.
doi: 10.1090/coll/044. |
[20] |
T. Y. Lam, An introduction to real algebra, in Ordered Fields and real Algebraic Geometry (Boulder, Colo., 1983), Rocky Mountain J. Math., 14 (1984), 767–814.
doi: 10.1216/RMJ-1984-14-4-767. |
[21] |
T. Y. Lam, Introduction to Quadratic Forms Over Fields, Graduate Studies in Mathematics, vol. 67, American Mathematical Society, Providence, RI, 2005. |
[22] |
D. W. Lewis and J.-P. Tignol,
On the signature of an involution, Arch. Math. (Basel), 60 (1993), 128-135.
doi: 10.1007/BF01199098. |
[23] |
D. W. Lewis and T. Unger,
A local-global principle for algebras with involution and Hermitian forms, Math. Z., 244 (2003), 469-477.
doi: 10.1007/s00209-003-0490-6. |
[24] |
D. W. Lewis and T. Unger,
Hermitian Morita theory: A matrix approach, Irish Math. Soc. Bull., 62 (2008), 37-41.
|
[25] |
F. Lorenz and J. Leicht,
Die Primideale des Wittschen Ringes, Invent. Math., 10 (1970), 82-88.
doi: 10.1007/BF01402972. |
[26] |
A. Pfister,
Quadratische Formen in beliebigen Körpern, Invent. Math., 1 (1966), 116-132.
doi: 10.1007/BF01389724. |
[27] |
A. Prestel,
Quadratische Semi-Ordnungen und quadratische Formen, Math. Z., 133 (1973), 319-342.
doi: 10.1007/BF01177872. |
[28] |
A. Prestel, Lectures on Formally Real Fields, Lecture Notes in Mathematics, vol. 1093, Springer-Verlag, Berlin, 1984.
doi: 10.1007/BFb0101548. |
[29] |
C. Procesi and M. Schacher, A non-commutative real Nullstellensatz and Hilbert's 17th problem, Ann. of Math. (2), 104 (1976), 395–406.
doi: 10.2307/1970962. |
[30] |
A. Quéguiner,
Signature des involutions de deuxiéme espéce, Arch. Math. (Basel), 65 (1995), 408-412.
doi: 10.1007/BF01198071. |
[31] |
W. Scharlau,
Induction theorems and the structure of the Witt group, Invent. Math., 11 (1970), 37-44.
doi: 10.1007/BF01389804. |
[32] |
W. Scharlau, Quadratic and Hermitian Forms, Grundlehren der Mathematischen Wissenschaften, vol. 270, Springer-Verlag, Berlin, 1985.
doi: 10.1007/978-3-642-69971-9. |
[33] |
J. J. Sylvester,
A demonstration of the theorem that every homogeneous quadratic polynomial is reducible by real orthogonal substitutions to the form of a sum of positive and negative squares, Philosophical Magazine, 4 (1852), 138-142.
doi: 10.1080/14786445208647087. |
[34] |
J. -P. Tignol, Algebras with involution and classical groups, in European Congress of Mathematics, Vol. II (Budapest, 1996), Progr. Math., vol. 169, Birkhäuser, Basel, (1998), 244–258. |
[35] |
A. Weil,
Algebras with involutions and the classical groups, J. Indian Math. Soc. (N.S.), 24 (1961), 589-623.
|
[1] |
Frank Sottile. The special Schubert calculus is real. Electronic Research Announcements, 1999, 5: 35-39. |
[2] |
Junichi Minagawa. On the uniqueness of Nash equilibrium in strategic-form games. Journal of Dynamics & Games, 2020, 7 (2) : 97-104. doi: 10.3934/jdg.2020006 |
[3] |
Arseny Egorov. Morse coding for a Fuchsian group of finite covolume. Journal of Modern Dynamics, 2009, 3 (4) : 637-646. doi: 10.3934/jmd.2009.3.637 |
[4] |
Ronald E. Mickens. Positivity preserving discrete model for the coupled ODE's modeling glycolysis. Conference Publications, 2003, 2003 (Special) : 623-629. doi: 10.3934/proc.2003.2003.623 |
[5] |
Michael Grinfeld, Amy Novick-Cohen. Some remarks on stability for a phase field model with memory. Discrete & Continuous Dynamical Systems - A, 2006, 15 (4) : 1089-1117. doi: 10.3934/dcds.2006.15.1089 |
[6] |
Horst R. Thieme. Remarks on resolvent positive operators and their perturbation. Discrete & Continuous Dynamical Systems - A, 1998, 4 (1) : 73-90. doi: 10.3934/dcds.1998.4.73 |
[7] |
Haiyan Wang. Existence and nonexistence of positive radial solutions for quasilinear systems. Conference Publications, 2009, 2009 (Special) : 810-817. doi: 10.3934/proc.2009.2009.810 |
[8] |
Tomáš Roubíček. An energy-conserving time-discretisation scheme for poroelastic media with phase-field fracture emitting waves and heat. Discrete & Continuous Dynamical Systems - S, 2017, 10 (4) : 867-893. doi: 10.3934/dcdss.2017044 |
[9] |
Hakan Özadam, Ferruh Özbudak. A note on negacyclic and cyclic codes of length $p^s$ over a finite field of characteristic $p$. Advances in Mathematics of Communications, 2009, 3 (3) : 265-271. doi: 10.3934/amc.2009.3.265 |
[10] |
Ka Luen Cheung, Man Chun Leung. Asymptotic behavior of positive solutions of the equation $ \Delta u + K u^{\frac{n+2}{n-2}} = 0$ in $IR^n$ and positive scalar curvature. Conference Publications, 2001, 2001 (Special) : 109-120. doi: 10.3934/proc.2001.2001.109 |
[11] |
Zaihong Wang, Jin Li, Tiantian Ma. An erratum note on the paper: Positive periodic solution for Brillouin electron beam focusing system. Discrete & Continuous Dynamical Systems - B, 2013, 18 (7) : 1995-1997. doi: 10.3934/dcdsb.2013.18.1995 |
[12] |
Zhiming Guo, Zhi-Chun Yang, Xingfu Zou. Existence and uniqueness of positive solution to a non-local differential equation with homogeneous Dirichlet boundary condition---A non-monotone case. Communications on Pure & Applied Analysis, 2012, 11 (5) : 1825-1838. doi: 10.3934/cpaa.2012.11.1825 |
[13] |
Hirofumi Notsu, Masato Kimura. Symmetry and positive definiteness of the tensor-valued spring constant derived from P1-FEM for the equations of linear elasticity. Networks & Heterogeneous Media, 2014, 9 (4) : 617-634. doi: 10.3934/nhm.2014.9.617 |
2019 Impact Factor: 0.5
Tools
Metrics
Other articles
by authors
[Back to Top]