
-
Previous Article
A moment method for invariant ensembles
- ERA-MS Home
- This Volume
-
Next Article
On the norm continuity of the hk-fourier transform
Explicit geodesics in Gromov-Hausdorff space
Department of Mathematics, The Ohio State University, 100 Math Tower, 231 West 18th Avenue, Columbus, OH 43210. Phone: (614) 292-4975, Fax: (614) 292-1479 |
We provide an alternative, constructive proof that the collection ${\mathcal{M}}$ of isometry classes of compact metric spaces endowed with the Gromov-Hausdorff distance is a geodesic space. The core of our proof is a construction of explicit geodesics on ${\mathcal{M}}$. We also provide several interesting examples of geodesics on ${\mathcal{M}}$, including a geodesic between ${\mathbb{S}}^0$ and ${\mathbb{S}}^n$ for any $n\geq 1$.
References:
[1] |
B. Bollobás,
The Art of Mathematics: Coffee time in Memphis, Cambridge University Press, New York, 2006.
doi: 10.1017/CBO9780511816574. |
[2] |
M. R. Bridson and A. Haefliger,
Metric Spaces of Non-Positive Curvature, Springer-Verlag, Berlin, 1999.
doi: 10.1007/978-3-662-12494-9. |
[3] |
D. Burago, Y. Burago and S. Ivanov,
A Course in Metric Geometry, AMS Graduate Studies in Math., 33, American Mathematical Society, 2001.
doi: 10.1090/gsm/033. |
[4] |
M. Gromov,
Metric Structures for Riemannian and non-Riemannian Spaces, Progress in Mathematics, 152, Birkhäuser Boston Inc., Boston, MA, 1999. |
[5] |
A. Hatcher,
Algebraic Topology, Cambridge University Press, Cambridge, 2002. |
[6] |
A. Ivanov, N. Nikolaeva and A. Tuzhilin, The Gromov-Hausdorff metric on the space of compact metric spaces is strictly intrinsic, (Russian) Mat. Zametki, 100 (2016), 947-950; translation in Math. Notes, 100 (2016), 883-885. |
[7] |
V. Pestov,
Dynamics of Infinite-Dimensional Groups: The Ramsey-Dvoretzky-Milman Phenomenon, University Lecture Series, 40, American Mathematical Soc., Providence, RI, 2006. |
[8] |
P. Petersen,
Riemannian Geometry, Second edition, Graduate Texts in Mathematics, 171, Springer, New York, 2006. |
[9] |
K.-T. Sturm, The space of spaces: curvature bounds and gradient flows on the space of metric measure spaces, preprint, arXiv: 1208.0434, (2012). Google Scholar |
show all references
References:
[1] |
B. Bollobás,
The Art of Mathematics: Coffee time in Memphis, Cambridge University Press, New York, 2006.
doi: 10.1017/CBO9780511816574. |
[2] |
M. R. Bridson and A. Haefliger,
Metric Spaces of Non-Positive Curvature, Springer-Verlag, Berlin, 1999.
doi: 10.1007/978-3-662-12494-9. |
[3] |
D. Burago, Y. Burago and S. Ivanov,
A Course in Metric Geometry, AMS Graduate Studies in Math., 33, American Mathematical Society, 2001.
doi: 10.1090/gsm/033. |
[4] |
M. Gromov,
Metric Structures for Riemannian and non-Riemannian Spaces, Progress in Mathematics, 152, Birkhäuser Boston Inc., Boston, MA, 1999. |
[5] |
A. Hatcher,
Algebraic Topology, Cambridge University Press, Cambridge, 2002. |
[6] |
A. Ivanov, N. Nikolaeva and A. Tuzhilin, The Gromov-Hausdorff metric on the space of compact metric spaces is strictly intrinsic, (Russian) Mat. Zametki, 100 (2016), 947-950; translation in Math. Notes, 100 (2016), 883-885. |
[7] |
V. Pestov,
Dynamics of Infinite-Dimensional Groups: The Ramsey-Dvoretzky-Milman Phenomenon, University Lecture Series, 40, American Mathematical Soc., Providence, RI, 2006. |
[8] |
P. Petersen,
Riemannian Geometry, Second edition, Graduate Texts in Mathematics, 171, Springer, New York, 2006. |
[9] |
K.-T. Sturm, The space of spaces: curvature bounds and gradient flows on the space of metric measure spaces, preprint, arXiv: 1208.0434, (2012). Google Scholar |

[1] |
Nhan-Phu Chung. Gromov-Hausdorff distances for dynamical systems. Discrete & Continuous Dynamical Systems - A, 2020, 40 (11) : 6179-6200. doi: 10.3934/dcds.2020275 |
[2] |
Alexanger Arbieto, Carlos Arnoldo Morales Rojas. Topological stability from Gromov-Hausdorff viewpoint. Discrete & Continuous Dynamical Systems - A, 2017, 37 (7) : 3531-3544. doi: 10.3934/dcds.2017151 |
[3] |
Meihua Dong, Keonhee Lee, Carlos Morales. Gromov-Hausdorff stability for group actions. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1347-1357. doi: 10.3934/dcds.2020320 |
[4] |
Jihoon Lee, Nguyen Thanh Nguyen. Gromov-Hausdorff stability of reaction diffusion equations with Robin boundary conditions under perturbations of the domain and equation. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021020 |
[5] |
Tapio Rajala. Improved geodesics for the reduced curvature-dimension condition in branching metric spaces. Discrete & Continuous Dynamical Systems - A, 2013, 33 (7) : 3043-3056. doi: 10.3934/dcds.2013.33.3043 |
[6] |
Patrick M. Fitzpatrick, Jacobo Pejsachowicz. Branching and bifurcation. Discrete & Continuous Dynamical Systems - S, 2019, 12 (7) : 1955-1975. doi: 10.3934/dcdss.2019127 |
[7] |
Ana Cristina Mereu, Marco Antonio Teixeira. Reversibility and branching of periodic orbits. Discrete & Continuous Dynamical Systems - A, 2013, 33 (3) : 1177-1199. doi: 10.3934/dcds.2013.33.1177 |
[8] |
Dejian Chang, Huili Liu, Jie Xiong. A branching particle system approximation for a class of FBSDEs. Probability, Uncertainty and Quantitative Risk, 2016, 1 (0) : 9-. doi: 10.1186/s41546-016-0007-y |
[9] |
Alex Eskin, Maryam Mirzakhani. Counting closed geodesics in moduli space. Journal of Modern Dynamics, 2011, 5 (1) : 71-105. doi: 10.3934/jmd.2011.5.71 |
[10] |
José M. Arrieta, Esperanza Santamaría. Estimates on the distance of inertial manifolds. Discrete & Continuous Dynamical Systems - A, 2014, 34 (10) : 3921-3944. doi: 10.3934/dcds.2014.34.3921 |
[11] |
Liliana Trejo-Valencia, Edgardo Ugalde. Projective distance and $g$-measures. Discrete & Continuous Dynamical Systems - B, 2015, 20 (10) : 3565-3579. doi: 10.3934/dcdsb.2015.20.3565 |
[12] |
Marcello Delitala, Tommaso Lorenzi. Evolutionary branching patterns in predator-prey structured populations. Discrete & Continuous Dynamical Systems - B, 2013, 18 (9) : 2267-2282. doi: 10.3934/dcdsb.2013.18.2267 |
[13] |
Stéphane Sabourau. Growth of quotients of groups acting by isometries on Gromov-hyperbolic spaces. Journal of Modern Dynamics, 2013, 7 (2) : 269-290. doi: 10.3934/jmd.2013.7.269 |
[14] |
Penka Georgieva, Aleksey Zinger. Real orientations, real Gromov-Witten theory, and real enumerative geometry. Electronic Research Announcements, 2017, 24: 87-99. doi: 10.3934/era.2017.24.010 |
[15] |
Soonki Hong, Seonhee Lim. Martin boundary of brownian motion on Gromov hyperbolic metric graphs. Discrete & Continuous Dynamical Systems - A, 2021 doi: 10.3934/dcds.2021014 |
[16] |
Michael Scheutzow, Maite Wilke-Berenguer. Random Delta-Hausdorff-attractors. Discrete & Continuous Dynamical Systems - B, 2018, 23 (3) : 1199-1217. doi: 10.3934/dcdsb.2018148 |
[17] |
Alexander Nabutovsky and Regina Rotman. Lengths of geodesics between two points on a Riemannian manifold. Electronic Research Announcements, 2007, 13: 13-20. |
[18] |
R. Bartolo, Anna Maria Candela, J.L. Flores. Timelike Geodesics in stationary Lorentzian manifolds with unbounded coefficients. Conference Publications, 2005, 2005 (Special) : 70-76. doi: 10.3934/proc.2005.2005.70 |
[19] |
Eva Glasmachers, Gerhard Knieper, Carlos Ogouyandjou, Jan Philipp Schröder. Topological entropy of minimal geodesics and volume growth on surfaces. Journal of Modern Dynamics, 2014, 8 (1) : 75-91. doi: 10.3934/jmd.2014.8.75 |
[20] |
Abbas Bahri. Attaching maps in the standard geodesics problem on $S^2$. Discrete & Continuous Dynamical Systems - A, 2011, 30 (2) : 379-426. doi: 10.3934/dcds.2011.30.379 |
2019 Impact Factor: 0.5
Tools
Article outline
Figures and Tables
[Back to Top]