-
Previous Article
On the embeddings of the Riemann sphere with nonnegative normal bundles
- ERA-MS Home
- This Volume
-
Next Article
A moment method for invariant ensembles
Characterization of Log-convex decay in non-selfadjoint dynamics
Department of Mathematical Sciences, Aalborg University, Skjernvej 4A, DK-9220 Aalborg Øst, Denmark |
The short-time and global behavior are studied for an autonomous linear evolution equation, which is defined by a generator inducing a uniformly bounded holomorphic semigroup in a Hilbert space. A general necessary and sufficient condition is introduced under which the norm of the solution is shown to be a log-convex and strictly decreasing function of time, and differentiable also at the initial time with a derivative controlled by the lower bound of the generator, which moreover is shown to be positively accretive. Injectivity of holomorphic semigroups is the main technical tool.
References:
[1] |
A.-E. Christensen and J. Johnsen, Final value problems for parabolic differential equations and their well-posedness, Axioms, 7 (2018), article no. 31, 1-36.
doi: 10.3390/axioms7020031. |
[2] |
A.-E. Christensen and J. Johnsen, On parabolic final value problems and well-posedness, C. R. Math. Acad. Sci. Paris, 356 (2018), 301-305.
doi: 10.1016/j.crma.2018.01.019. |
[3] |
G. Grubb, Distributions and Operators, Graduate Texts in Mathematics, 252, Springer, New York, 2009. |
[4] |
B. Helffer, Spectral Theory and Its Applications, Cambridge Studies in Advanced Mathematics, 139, Cambridge University Press, Cambridge, 2013. |
[5] |
L. Hörmander, The Analysis of Linear Partial Differential Operators, Grundlehren der mathematischen Wissenschaften, Springer Verlag, Berlin, 1983, 1985. |
[6] |
J. Janas,
On unbounded hyponormal operators. Ⅲ, Studia Math., 112 (1994), 75-82.
doi: 10.4064/sm-112-1-75-82. |
[7] |
T. Kato, Perturbation Theory for Linear Operators, Reprint of the 1980 edition, Classics in Mathematics, Springer-Verlag, Berlin, 1995. |
[8] |
S. Lang, Differential Manifolds, Addison-Wesley Publishing Co., Inc., Reading, Mass.-London-Don Mills, Ont., 1972. |
[9] |
C. Moler and C. Van Loan,
Nineteen dubious ways to compute the exponential of a matrix, twenty-five years later, SIAM Rev., 45 (2003), 3-49.
doi: 10.1137/S00361445024180. |
[10] |
C. P. Niculescu and L.-E. Persson, Convex Functions and Their Applications. A Contemporary Approach, CMS Books in Mathematics/Ouvrages de Mathématiques de la SMC, 23, Springer, New York, 2006.
doi: 10.1007/0-387-31077-0. |
[11] |
A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Applied Mathematical Sciences, 44, Springer-Verlag, New York, 1983.
doi: 10.1007/978-1-4612-5561-1. |
[12] |
G. K. Pedersen, Analysis Now, Graduate Texts in Mathematics, 118, Springer-Verlag, New York, 1989.
doi: 10.1007/978-1-4612-1007-8. |
[13] |
L. Perko, Differential Equations and Dynamical Systems, Third ed., Texts in Applied Mathematics, 7, Springer-Verlag, New York, 2001.
doi: 10.1007/978-1-4613-0003-8. |
[14] |
J. Rauch, Partial Differential Equations, Graduate Texts in Mathematics, 128, Springer-Verlag, New York, 1991.
doi: 10.1007/978-1-4612-0953-9. |
[15] |
L. Schwartz, Théorie des Distributions, (French) Publications de l'Institut de Mathématique de l'Université de Strasbourg, No. Ⅸ-Ⅹ. Nouvelle édition, entiérement corrigée, refondue et augmentée, Hermann, Paris, 1966. |
[16] |
R. E. Showalter,
The final value problem for evolution equations, J. Math. Anal. Appl., 47 (1974), 563-572.
doi: 10.1016/0022-247X(74)90008-0. |
[17] |
L. N. Trefethen and M. Embree, Spectra and Pseudospectra. The Behavior of Nonnormal Matrices and Operators, Princeton University Press, Princeton, NJ, 2005. |
show all references
References:
[1] |
A.-E. Christensen and J. Johnsen, Final value problems for parabolic differential equations and their well-posedness, Axioms, 7 (2018), article no. 31, 1-36.
doi: 10.3390/axioms7020031. |
[2] |
A.-E. Christensen and J. Johnsen, On parabolic final value problems and well-posedness, C. R. Math. Acad. Sci. Paris, 356 (2018), 301-305.
doi: 10.1016/j.crma.2018.01.019. |
[3] |
G. Grubb, Distributions and Operators, Graduate Texts in Mathematics, 252, Springer, New York, 2009. |
[4] |
B. Helffer, Spectral Theory and Its Applications, Cambridge Studies in Advanced Mathematics, 139, Cambridge University Press, Cambridge, 2013. |
[5] |
L. Hörmander, The Analysis of Linear Partial Differential Operators, Grundlehren der mathematischen Wissenschaften, Springer Verlag, Berlin, 1983, 1985. |
[6] |
J. Janas,
On unbounded hyponormal operators. Ⅲ, Studia Math., 112 (1994), 75-82.
doi: 10.4064/sm-112-1-75-82. |
[7] |
T. Kato, Perturbation Theory for Linear Operators, Reprint of the 1980 edition, Classics in Mathematics, Springer-Verlag, Berlin, 1995. |
[8] |
S. Lang, Differential Manifolds, Addison-Wesley Publishing Co., Inc., Reading, Mass.-London-Don Mills, Ont., 1972. |
[9] |
C. Moler and C. Van Loan,
Nineteen dubious ways to compute the exponential of a matrix, twenty-five years later, SIAM Rev., 45 (2003), 3-49.
doi: 10.1137/S00361445024180. |
[10] |
C. P. Niculescu and L.-E. Persson, Convex Functions and Their Applications. A Contemporary Approach, CMS Books in Mathematics/Ouvrages de Mathématiques de la SMC, 23, Springer, New York, 2006.
doi: 10.1007/0-387-31077-0. |
[11] |
A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Applied Mathematical Sciences, 44, Springer-Verlag, New York, 1983.
doi: 10.1007/978-1-4612-5561-1. |
[12] |
G. K. Pedersen, Analysis Now, Graduate Texts in Mathematics, 118, Springer-Verlag, New York, 1989.
doi: 10.1007/978-1-4612-1007-8. |
[13] |
L. Perko, Differential Equations and Dynamical Systems, Third ed., Texts in Applied Mathematics, 7, Springer-Verlag, New York, 2001.
doi: 10.1007/978-1-4613-0003-8. |
[14] |
J. Rauch, Partial Differential Equations, Graduate Texts in Mathematics, 128, Springer-Verlag, New York, 1991.
doi: 10.1007/978-1-4612-0953-9. |
[15] |
L. Schwartz, Théorie des Distributions, (French) Publications de l'Institut de Mathématique de l'Université de Strasbourg, No. Ⅸ-Ⅹ. Nouvelle édition, entiérement corrigée, refondue et augmentée, Hermann, Paris, 1966. |
[16] |
R. E. Showalter,
The final value problem for evolution equations, J. Math. Anal. Appl., 47 (1974), 563-572.
doi: 10.1016/0022-247X(74)90008-0. |
[17] |
L. N. Trefethen and M. Embree, Spectra and Pseudospectra. The Behavior of Nonnormal Matrices and Operators, Princeton University Press, Princeton, NJ, 2005. |
[1] |
Hyung Ju Hwang, Thomas P. Witelski. Short-time pattern formation in thin film equations. Discrete and Continuous Dynamical Systems, 2009, 23 (3) : 867-885. doi: 10.3934/dcds.2009.23.867 |
[2] |
Laura Cremaschi, Carlo Mantegazza. Short-time existence of the second order renormalization group flow in dimension three. Discrete and Continuous Dynamical Systems, 2015, 35 (12) : 5787-5798. doi: 10.3934/dcds.2015.35.5787 |
[3] |
Marcel Oliver. The Lagrangian averaged Euler equations as the short-time inviscid limit of the Navier–Stokes equations with Besov class data in $\mathbb{R}^2$. Communications on Pure and Applied Analysis, 2002, 1 (2) : 221-235. doi: 10.3934/cpaa.2002.1.221 |
[4] |
Guofu Lu. Nonexistence and short time asymptotic behavior of source-type solution for porous medium equation with convection in one-dimension. Discrete and Continuous Dynamical Systems - B, 2016, 21 (5) : 1567-1586. doi: 10.3934/dcdsb.2016011 |
[5] |
Dieter Bothe, Petra Wittbold. Abstract reaction-diffusion systems with $m$-completely accretive diffusion operators and measurable reaction rates. Communications on Pure and Applied Analysis, 2012, 11 (6) : 2239-2260. doi: 10.3934/cpaa.2012.11.2239 |
[6] |
Gregory M. Zaverucha, Douglas R. Stinson. Short one-time signatures. Advances in Mathematics of Communications, 2011, 5 (3) : 473-488. doi: 10.3934/amc.2011.5.473 |
[7] |
Jérôme Buzzi, Véronique Maume-Deschamps. Decay of correlations on towers with non-Hölder Jacobian and non-exponential return time. Discrete and Continuous Dynamical Systems, 2005, 12 (4) : 639-656. doi: 10.3934/dcds.2005.12.639 |
[8] |
Alessandro Fonda, Rafael Ortega. Positively homogeneous equations in the plane. Discrete and Continuous Dynamical Systems, 2000, 6 (2) : 475-482. doi: 10.3934/dcds.2000.6.475 |
[9] |
Robert M. Strain. Optimal time decay of the non cut-off Boltzmann equation in the whole space. Kinetic and Related Models, 2012, 5 (3) : 583-613. doi: 10.3934/krm.2012.5.583 |
[10] |
Patrick Martinez, Judith Vancostenoble. Exact controllability in "arbitrarily short time" of the semilinear wave equation. Discrete and Continuous Dynamical Systems, 2003, 9 (4) : 901-924. doi: 10.3934/dcds.2003.9.901 |
[11] |
Juan Pablo Maldonado López. Discrete time mean field games: The short-stage limit. Journal of Dynamics and Games, 2015, 2 (1) : 89-101. doi: 10.3934/jdg.2015.2.89 |
[12] |
Mingming Chen, Xianguo Geng, Kedong Wang. Long-time asymptotics for the modified complex short pulse equation. Discrete and Continuous Dynamical Systems, 2022 doi: 10.3934/dcds.2022060 |
[13] |
Qingshan You, Qun Wan, Yipeng Liu. A short note on strongly convex programming for exact matrix completion and robust principal component analysis. Inverse Problems and Imaging, 2013, 7 (1) : 305-306. doi: 10.3934/ipi.2013.7.305 |
[14] |
Zhong-Jie Han, Gen-Qi Xu. Dynamical behavior of networks of non-uniform Timoshenko beams system with boundary time-delay inputs. Networks and Heterogeneous Media, 2011, 6 (2) : 297-327. doi: 10.3934/nhm.2011.6.297 |
[15] |
Zhenhua Guo, Wenchao Dong, Jinjing Liu. Large-time behavior of solution to an inflow problem on the half space for a class of compressible non-Newtonian fluids. Communications on Pure and Applied Analysis, 2019, 18 (4) : 2133-2161. doi: 10.3934/cpaa.2019096 |
[16] |
Zhong Tan, Yong Wang, Xu Zhang. Large time behavior of solutions to the non-isentropic compressible Navier-Stokes-Poisson system in $\mathbb{R}^{3}$. Kinetic and Related Models, 2012, 5 (3) : 615-638. doi: 10.3934/krm.2012.5.615 |
[17] |
Małgorzata Wyrwas, Dorota Mozyrska, Ewa Girejko. Subdifferentials of convex functions on time scales. Discrete and Continuous Dynamical Systems, 2011, 29 (2) : 671-691. doi: 10.3934/dcds.2011.29.671 |
[18] |
Eskil Hansen, Alexander Ostermann. Dimension splitting for time dependent operators. Conference Publications, 2009, 2009 (Special) : 322-332. doi: 10.3934/proc.2009.2009.322 |
[19] |
Yong Wang, Wanquan Liu, Guanglu Zhou. An efficient algorithm for non-convex sparse optimization. Journal of Industrial and Management Optimization, 2019, 15 (4) : 2009-2021. doi: 10.3934/jimo.2018134 |
[20] |
Andrea Braides, Valeria Chiadò Piat. Non convex homogenization problems for singular structures. Networks and Heterogeneous Media, 2008, 3 (3) : 489-508. doi: 10.3934/nhm.2008.3.489 |
2020 Impact Factor: 0.929
Tools
Metrics
Other articles
by authors
[Back to Top]