-
Previous Article
Fractal Weyl bounds and Hecke triangle groups
- ERA-MS Home
- This Volume
-
Next Article
Cluster algebras with Grassmann variables
Orthogonal powers and Möbius conjecture for smooth time changes of horocycle flows
1. | Département de Mathématiques, Université de Lille, Cité Scientifique, Villeneuve, D'Ascq, Cedex 9655, FR |
2. | Department of Mathematics, University of Maryland, 4176 Campus Drive, College Park, MD 20742-4015, USA |
We derive, from the work of M. Ratner on joinings of time-changes of horocycle flows and from the result of the authors on its cohomology, the property of orthogonality of powers for non-trivial smooth time-changes of horocycle flows on compact quotients. Such a property is known to imply P. Sarnak's Möbius orthogonality conjecture, already known for horocycle flows by the work of J. Bourgain, P. Sarnak and T. Ziegler.
References:
[1] |
J. Bourgain, P. Sarnak, and T. Ziegler, Disjointness of Moebius from horocycle flows, in From Fourier Analysis and Number Theory to Radon Transforms and Geometry, Dev. Math., 28, Springer, New York, 2013, 67–83.
doi: 10.1007/978-1-4614-4075-8_5. |
[2] |
A. Bufetov and G. Forni,
Limit theorems for horocycle flows, Ann. Sci. Éc. Norm. Supér. (4), 47 (2014), 851-903.
doi: 10.24033/asens.2229. |
[3] |
D. Dolgopyat and O. Sarig,
Temporal distributional limit theorems for dynamical systems, J. Stat. Phys., 166 (2017), 680-713.
doi: 10.1007/s10955-016-1689-3. |
[4] |
E. H. El Abdalaoui, M. Lemańczyk and T. de la Rue,
On spectral disjointness of powers for rank-one transformations and Möbius orthogonality, J. Funct. Anal., 266 (2014), 284-317.
doi: 10.1016/j.jfa.2013.09.005. |
[5] |
L. Flaminio and G. Forni,
Invariant distributions and time averages for horocycle flows, Duke Math. J., 119 (2003), 465-526.
doi: 10.1215/S0012-7094-03-11932-8. |
[6] |
A. Kanigowski, M. Lemańczyk, and C. Ulcigrai, On disjointness properties of some parabolic flows, arXiv: 1810.11576, preprint. Google Scholar |
[7] |
M. Ratner,
Rigid reparametrizations and cohomology for horocycle flows, Invent. Math., 88 (1987), 341-374.
doi: 10.1007/BF01388912. |
[8] |
P. Sarnak, Three lectures on the Möbius function, randomness and dynamics, http://publications.ias.edu/sarnak/paper/512, Mathematics - Number Theory, 11N37, 2011. Google Scholar |
show all references
References:
[1] |
J. Bourgain, P. Sarnak, and T. Ziegler, Disjointness of Moebius from horocycle flows, in From Fourier Analysis and Number Theory to Radon Transforms and Geometry, Dev. Math., 28, Springer, New York, 2013, 67–83.
doi: 10.1007/978-1-4614-4075-8_5. |
[2] |
A. Bufetov and G. Forni,
Limit theorems for horocycle flows, Ann. Sci. Éc. Norm. Supér. (4), 47 (2014), 851-903.
doi: 10.24033/asens.2229. |
[3] |
D. Dolgopyat and O. Sarig,
Temporal distributional limit theorems for dynamical systems, J. Stat. Phys., 166 (2017), 680-713.
doi: 10.1007/s10955-016-1689-3. |
[4] |
E. H. El Abdalaoui, M. Lemańczyk and T. de la Rue,
On spectral disjointness of powers for rank-one transformations and Möbius orthogonality, J. Funct. Anal., 266 (2014), 284-317.
doi: 10.1016/j.jfa.2013.09.005. |
[5] |
L. Flaminio and G. Forni,
Invariant distributions and time averages for horocycle flows, Duke Math. J., 119 (2003), 465-526.
doi: 10.1215/S0012-7094-03-11932-8. |
[6] |
A. Kanigowski, M. Lemańczyk, and C. Ulcigrai, On disjointness properties of some parabolic flows, arXiv: 1810.11576, preprint. Google Scholar |
[7] |
M. Ratner,
Rigid reparametrizations and cohomology for horocycle flows, Invent. Math., 88 (1987), 341-374.
doi: 10.1007/BF01388912. |
[8] |
P. Sarnak, Three lectures on the Möbius function, randomness and dynamics, http://publications.ias.edu/sarnak/paper/512, Mathematics - Number Theory, 11N37, 2011. Google Scholar |
[1] |
Francois Ledrappier and Omri Sarig. Invariant measures for the horocycle flow on periodic hyperbolic surfaces. Electronic Research Announcements, 2005, 11: 89-94. |
[2] |
Zhenqi Jenny Wang. The twisted cohomological equation over the geodesic flow. Discrete & Continuous Dynamical Systems, 2019, 39 (7) : 3923-3940. doi: 10.3934/dcds.2019158 |
[3] |
Philipp Reiter. Regularity theory for the Möbius energy. Communications on Pure & Applied Analysis, 2010, 9 (5) : 1463-1471. doi: 10.3934/cpaa.2010.9.1463 |
[4] |
Konovenko Nadiia, Lychagin Valentin. Möbius invariants in image recognition. Journal of Geometric Mechanics, 2017, 9 (2) : 191-206. doi: 10.3934/jgm.2017008 |
[5] |
Livio Flaminio, Giovanni Forni. On the cohomological equation for nilflows. Journal of Modern Dynamics, 2007, 1 (1) : 37-60. doi: 10.3934/jmd.2007.1.37 |
[6] |
Petr Kůrka. Minimality in iterative systems of Möbius transformations. Conference Publications, 2011, 2011 (Special) : 903-912. doi: 10.3934/proc.2011.2011.903 |
[7] |
Petr Kůrka. Iterative systems of real Möbius transformations. Discrete & Continuous Dynamical Systems, 2009, 25 (2) : 567-574. doi: 10.3934/dcds.2009.25.567 |
[8] |
Wen Huang, Jianya Liu, Ke Wang. Möbius disjointness for skew products on a circle and a nilmanifold. Discrete & Continuous Dynamical Systems, 2021, 41 (8) : 3531-3553. doi: 10.3934/dcds.2021006 |
[9] |
James Tanis, Zhenqi Jenny Wang. Cohomological equation and cocycle rigidity of discrete parabolic actions. Discrete & Continuous Dynamical Systems, 2019, 39 (7) : 3969-4000. doi: 10.3934/dcds.2019160 |
[10] |
Rich Stankewitz, Hiroki Sumi. Backward iteration algorithms for Julia sets of Möbius semigroups. Discrete & Continuous Dynamical Systems, 2016, 36 (11) : 6475-6485. doi: 10.3934/dcds.2016079 |
[11] |
Jon Chaika, Alex Eskin. Möbius disjointness for interval exchange transformations on three intervals. Journal of Modern Dynamics, 2019, 14: 55-86. doi: 10.3934/jmd.2019003 |
[12] |
Wen Huang, Zhiren Wang, Guohua Zhang. Möbius disjointness for topological models of ergodic systems with discrete spectrum. Journal of Modern Dynamics, 2019, 14: 277-290. doi: 10.3934/jmd.2019010 |
[13] |
Florian Dorsch, Hermann Schulz-Baldes. Random Möbius dynamics on the unit disc and perturbation theory for Lyapunov exponents. Discrete & Continuous Dynamical Systems - B, 2021 doi: 10.3934/dcdsb.2021076 |
[14] |
Livio Flaminio, Giovanni Forni, Federico Rodriguez Hertz. Invariant distributions for homogeneous flows and affine transformations. Journal of Modern Dynamics, 2016, 10: 33-79. doi: 10.3934/jmd.2016.10.33 |
[15] |
Slobodan N. Simić. Hölder forms and integrability of invariant distributions. Discrete & Continuous Dynamical Systems, 2009, 25 (2) : 669-685. doi: 10.3934/dcds.2009.25.669 |
[16] |
Giovanni Forni. The cohomological equation for area-preserving flows on compact surfaces. Electronic Research Announcements, 1995, 1: 114-123. |
[17] |
Fernando Alcalde Cuesta, Françoise Dal'Bo, Matilde Martínez, Alberto Verjovsky. Minimality of the horocycle flow on laminations by hyperbolic surfaces with non-trivial topology. Discrete & Continuous Dynamical Systems, 2016, 36 (9) : 4619-4635. doi: 10.3934/dcds.2016001 |
[18] |
Dieter Armbruster, Simone Göttlich, Stephan Knapp. Continuous approximation of $ M_t/M_t/ 1 $ distributions with application to production. Journal of Computational Dynamics, 2020, 7 (2) : 243-269. doi: 10.3934/jcd.2020010 |
[19] |
Fernando Alcalde Cuesta, Françoise Dal'Bo, Matilde Martínez, Alberto Verjovsky. Corrigendum to "Minimality of the horocycle flow on laminations by hyperbolic surfaces with non-trivial topology". Discrete & Continuous Dynamical Systems, 2017, 37 (8) : 4585-4586. doi: 10.3934/dcds.2017196 |
[20] |
Jingxian Sun, Shouchuan Hu. Flow-invariant sets and critical point theory. Discrete & Continuous Dynamical Systems, 2003, 9 (2) : 483-496. doi: 10.3934/dcds.2003.9.483 |
2019 Impact Factor: 0.5
Tools
Article outline
[Back to Top]