• Previous Article
    A weak Galerkin finite element method for nonlinear conservation laws
  • ERA Home
  • This Issue
  • Next Article
    Two-grid method for semiconductor device problem by mixed finite element method and characteristics finite element method
March  2021, 29(1): 1881-1895. doi: 10.3934/era.2020096

Viscosity robust weak Galerkin finite element methods for Stokes problems

1. 

Craft & Hawkins Department of Petroleum Engineering, Louisiana State University, 2245 Patrick F Taylor Hall, Baton Rouge, LA, 70803, USA

2. 

Department of Mathematics, University of Georgia, Athens, GA, 30605, USA

* Corresponding author: Lin Mu

Received  April 2020 Revised  July 2020 Published  September 2020

In this paper, we develop a viscosity robust weak Galerkin finite element scheme for Stokes equations. The major idea for achieving pressure-independent energy-error estimate is to use a divergence preserving velocity reconstruction operator in the discretization of the right hand side body force. The optimal convergence results for velocity and pressure have been established in this paper. Finally, numerical examples are presented for validating the theoretical conclusions.

Citation: Bin Wang, Lin Mu. Viscosity robust weak Galerkin finite element methods for Stokes problems. Electronic Research Archive, 2021, 29 (1) : 1881-1895. doi: 10.3934/era.2020096
References:
[1]

C. BrenneckeA. LinkeC. Merdon and J. Schöberl, Optimal and pressure-independent $L^2$ velocity error estimates for a modified Crouzeix-Raviart Stokes element with BDM reconstructions, J. Comput. Math., 33 (2015), 191-208.  doi: 10.4208/jcm.1411-m4499.  Google Scholar

[2]

D. A. Di PietroA. ErnA. Linke and F. Schieweck, A discontinuous skeletal method for the viscosity-dependent Stokes problem, Comput. Methods Appl. Mech. Engrg., 306 (2016), 175-195.  doi: 10.1016/j.cma.2016.03.033.  Google Scholar

[3]

J. Guzmán and M. Neilan, Conforming and divergence-free Stokes elements on general triangular meshes, Math. Comp., 83 (2014), 15-36.  doi: 10.1090/S0025-5718-2013-02753-6.  Google Scholar

[4]

C. Lehrenfeld and J. Schöberl, High order exactly divergence-free hybrid discontinuous Galerkin methods for unsteady incompressible flows, Comput. Methods Appl. Mech. Engrg., 307 (2016), 339-361.  doi: 10.1016/j.cma.2016.04.025.  Google Scholar

[5]

A. Linke, A divergence-free velocity reconstruction for incompressible flows, C. R. Math. Acad. Sci. Paris, 350 (2012), 837-840.  doi: 10.1016/j.crma.2012.10.010.  Google Scholar

[6]

A. Linke, On the role of the Helmholtz decomposition in mixed methods for incompressible flows and a new variational crime, Comput. Methods Appl. Mech. Engrg., 268 (2014), 782-800.  doi: 10.1016/j.cma.2013.10.011.  Google Scholar

[7]

A. LinkeG. Matthies and L. Tobiska, Robust arbitrary order mixed finite element methods for the incompressible Stokes equations with pressure independent velocity errors, ESAIM Math. Model. Numer. Anal., 50 (2016), 289-309.  doi: 10.1051/m2an/2015044.  Google Scholar

[8]

Y. Liu and J. Wang, Simplified weak Galerkin and new finite difference schemes for the Stokes equation, J. Comput. Appl. Math., 361 (2019), 176-206.  doi: 10.1016/j.cam.2019.04.024.  Google Scholar

[9]

L. Mu, J. Wang, Y. Wang and X. Ye, A weak Galerkin mixed finite element method for biharmonic equations, in Numerical Solution of Partial Differential Equations: Theory, Algorithms, and Their Applications, Springer Proc. Math. Stat., 45, Springer, New York, 2013,247-277. doi: 10.1007/978-1-4614-7172-1_13.  Google Scholar

[10]

L. MuJ. Wang and X. Ye, Effective implementation of the weak Galerkin finite element methods for the biharmonic equation, Comput. Math. Appl., 74 (2017), 1215-1222.  doi: 10.1016/j.camwa.2017.06.002.  Google Scholar

[11]

T. TianQ. Zhai and R. Zhang, A new modified weak Galerkin finite element scheme for solving the stationary Stokes equations, J. Comput. Appl. Math., 329 (2018), 268-279.  doi: 10.1016/j.cam.2017.01.021.  Google Scholar

[12]

J. Wang and X. Ye, A weak Galerkin finite element method for second-order elliptic problems, J. Comput. Appl. Math., 241 (2013), 103-115.  doi: 10.1016/j.cam.2012.10.003.  Google Scholar

[13]

J. Wang and X. Ye, A weak Galerkin finite element method for the Stokes equations, Adv. Comput. Math., 42 (2016), 155-174.  doi: 10.1007/s10444-015-9415-2.  Google Scholar

[14]

S. Zhang, A new family of stable mixed finite elements for the 3D Stokes equations, Math. Comp., 74 (2005), 543-554.  doi: 10.1090/S0025-5718-04-01711-9.  Google Scholar

show all references

References:
[1]

C. BrenneckeA. LinkeC. Merdon and J. Schöberl, Optimal and pressure-independent $L^2$ velocity error estimates for a modified Crouzeix-Raviart Stokes element with BDM reconstructions, J. Comput. Math., 33 (2015), 191-208.  doi: 10.4208/jcm.1411-m4499.  Google Scholar

[2]

D. A. Di PietroA. ErnA. Linke and F. Schieweck, A discontinuous skeletal method for the viscosity-dependent Stokes problem, Comput. Methods Appl. Mech. Engrg., 306 (2016), 175-195.  doi: 10.1016/j.cma.2016.03.033.  Google Scholar

[3]

J. Guzmán and M. Neilan, Conforming and divergence-free Stokes elements on general triangular meshes, Math. Comp., 83 (2014), 15-36.  doi: 10.1090/S0025-5718-2013-02753-6.  Google Scholar

[4]

C. Lehrenfeld and J. Schöberl, High order exactly divergence-free hybrid discontinuous Galerkin methods for unsteady incompressible flows, Comput. Methods Appl. Mech. Engrg., 307 (2016), 339-361.  doi: 10.1016/j.cma.2016.04.025.  Google Scholar

[5]

A. Linke, A divergence-free velocity reconstruction for incompressible flows, C. R. Math. Acad. Sci. Paris, 350 (2012), 837-840.  doi: 10.1016/j.crma.2012.10.010.  Google Scholar

[6]

A. Linke, On the role of the Helmholtz decomposition in mixed methods for incompressible flows and a new variational crime, Comput. Methods Appl. Mech. Engrg., 268 (2014), 782-800.  doi: 10.1016/j.cma.2013.10.011.  Google Scholar

[7]

A. LinkeG. Matthies and L. Tobiska, Robust arbitrary order mixed finite element methods for the incompressible Stokes equations with pressure independent velocity errors, ESAIM Math. Model. Numer. Anal., 50 (2016), 289-309.  doi: 10.1051/m2an/2015044.  Google Scholar

[8]

Y. Liu and J. Wang, Simplified weak Galerkin and new finite difference schemes for the Stokes equation, J. Comput. Appl. Math., 361 (2019), 176-206.  doi: 10.1016/j.cam.2019.04.024.  Google Scholar

[9]

L. Mu, J. Wang, Y. Wang and X. Ye, A weak Galerkin mixed finite element method for biharmonic equations, in Numerical Solution of Partial Differential Equations: Theory, Algorithms, and Their Applications, Springer Proc. Math. Stat., 45, Springer, New York, 2013,247-277. doi: 10.1007/978-1-4614-7172-1_13.  Google Scholar

[10]

L. MuJ. Wang and X. Ye, Effective implementation of the weak Galerkin finite element methods for the biharmonic equation, Comput. Math. Appl., 74 (2017), 1215-1222.  doi: 10.1016/j.camwa.2017.06.002.  Google Scholar

[11]

T. TianQ. Zhai and R. Zhang, A new modified weak Galerkin finite element scheme for solving the stationary Stokes equations, J. Comput. Appl. Math., 329 (2018), 268-279.  doi: 10.1016/j.cam.2017.01.021.  Google Scholar

[12]

J. Wang and X. Ye, A weak Galerkin finite element method for second-order elliptic problems, J. Comput. Appl. Math., 241 (2013), 103-115.  doi: 10.1016/j.cam.2012.10.003.  Google Scholar

[13]

J. Wang and X. Ye, A weak Galerkin finite element method for the Stokes equations, Adv. Comput. Math., 42 (2016), 155-174.  doi: 10.1007/s10444-015-9415-2.  Google Scholar

[14]

S. Zhang, A new family of stable mixed finite elements for the 3D Stokes equations, Math. Comp., 74 (2005), 543-554.  doi: 10.1090/S0025-5718-04-01711-9.  Google Scholar

Figure 1.  Example 4.1: solution from Algorithm 2.2 (top); Algorithm 2.1 (bottom)
Figure 2.  Example 4.2: Error profiles and convergence results for $ {{|||}}\cdot{{|||}} $-norm on triangular mesh: standard scheme Algorithm 2.2 (left); new scheme Algorithm 2.1 (right)
Figure 3.  Example 4.2: Error profiles and convergence results for $ L^2 $-norm on triangular mesh: standard scheme Algorithm 2.2 (left); new scheme Algorithm 2.1 (right)
Figure 4.  Example 4.2: Error profiles and convergence results for $ \|p-p_h\| $ on triangular mesh: standard scheme Algorithm 2.2 (left); new scheme Algorithm 2.1 (right)
Figure 5.  Example 4.3: Profile for viscosity (left); magnitude plot for velocity by Algorithm 2.1 (middle); magnitude plot for Algorithm 2.2 (right). Top row illustrates the results for Test Case 1; Bottom row illustrates the results for Test Case 2
Table 1.  Example 4.4: Numerical results and convergence test for $ k = 0 $
Algorithm 2.1 Algorithm 2.2
$ 1/h $ $ {{|||}} {\bf e}_h{{|||}} $ Rate $ \| {\bf e}_h\| $ Rate $ \|\epsilon_h\| $ Rate $ {{|||}} {\bf e}_h{{|||}} $ Rate $ \| {\bf e}_h\| $ Rate $ \|\epsilon_h\| $ Rate
$ \nu=1 $
2 2.69E+2 7.22 1.11E+2 2.69E+2 7.22E 1.11E+2
4 2.35E+2 0.2 3.46 1.1 5.70E+1 1.0 2.35E+2 0.2 3.46 1.1 5.70E+1 1.0
8 1.54E+2 0.6 1.14 1.6 2.81E+1 1.0 1.54E+2 0.6 1.14 1.60 2.81E+1 1.0
16 7.65E+1 1.0 2.95E-1 2.0 1.31E+1 1.1 7.65E+1 1.0 2.95E-1 2.0 1.31E+1 1.1
32 3.83E+1 1.0 7.39E-2 2.0 6.55 1.0 3.83E+1 1.0 7.38E-2 2.0 6.55 1.0
$ \nu=1e-2 $
2 2.69E+2 7.22 1.19 2.75E+2 7.74 1.12
4 2.35E+2 0.2 3.46 1.1 5.77E-1 1.1 2.35E+2 0.2 3.46 1.2 5.70E-1 1.0
8 1.54E+2 0.6 1.14 1.6 2.81E-1 1.0 1.68E+2 0.5 1.27 1.5 2.88E-1 1.0
16 7.65E+1 1.0 2.95E-1 2.0 1.30E-1 1.1 7.86E+1 1.1 3.06E-1 2.1 1.33E-1 1.1
32 3.83E+1 1.0 7.38E-2 2.0 6.50E-2 1.0 3.93E+1 1.0 7.65E-2 2.0 6.65E-2 1.0
$ \nu=1e-4 $
2 2.69E+2 7.22 1.19E-2 8.92E+3 3.16E+2 1.25E-1
4 2.35E+2 0.2 3.46 1.1 5.77E-3 1.1 5.34E+3 0.7 9.40E+1 1.8 7.15E-2 0.8
8 1.54E+2 0.6 1.14 1.6 2.81E-3 1.0 4.29E+3 0.3 3.53E+1 1.4 4.53E-2 0.7
16 7.65E+1 1.0 2.95E-1 2.0 1.30E-3 1.1 2.11E+3 1.0 9.11 2.0 1.62E-2 1.5
32 3.83E+1 1.0 7.38E-2 2.0 6.50E-4 1.0 1.06E+3 1.0 2.28 2.0 8.10E-3 1.0
Algorithm 2.1 Algorithm 2.2
$ 1/h $ $ {{|||}} {\bf e}_h{{|||}} $ Rate $ \| {\bf e}_h\| $ Rate $ \|\epsilon_h\| $ Rate $ {{|||}} {\bf e}_h{{|||}} $ Rate $ \| {\bf e}_h\| $ Rate $ \|\epsilon_h\| $ Rate
$ \nu=1 $
2 2.69E+2 7.22 1.11E+2 2.69E+2 7.22E 1.11E+2
4 2.35E+2 0.2 3.46 1.1 5.70E+1 1.0 2.35E+2 0.2 3.46 1.1 5.70E+1 1.0
8 1.54E+2 0.6 1.14 1.6 2.81E+1 1.0 1.54E+2 0.6 1.14 1.60 2.81E+1 1.0
16 7.65E+1 1.0 2.95E-1 2.0 1.31E+1 1.1 7.65E+1 1.0 2.95E-1 2.0 1.31E+1 1.1
32 3.83E+1 1.0 7.39E-2 2.0 6.55 1.0 3.83E+1 1.0 7.38E-2 2.0 6.55 1.0
$ \nu=1e-2 $
2 2.69E+2 7.22 1.19 2.75E+2 7.74 1.12
4 2.35E+2 0.2 3.46 1.1 5.77E-1 1.1 2.35E+2 0.2 3.46 1.2 5.70E-1 1.0
8 1.54E+2 0.6 1.14 1.6 2.81E-1 1.0 1.68E+2 0.5 1.27 1.5 2.88E-1 1.0
16 7.65E+1 1.0 2.95E-1 2.0 1.30E-1 1.1 7.86E+1 1.1 3.06E-1 2.1 1.33E-1 1.1
32 3.83E+1 1.0 7.38E-2 2.0 6.50E-2 1.0 3.93E+1 1.0 7.65E-2 2.0 6.65E-2 1.0
$ \nu=1e-4 $
2 2.69E+2 7.22 1.19E-2 8.92E+3 3.16E+2 1.25E-1
4 2.35E+2 0.2 3.46 1.1 5.77E-3 1.1 5.34E+3 0.7 9.40E+1 1.8 7.15E-2 0.8
8 1.54E+2 0.6 1.14 1.6 2.81E-3 1.0 4.29E+3 0.3 3.53E+1 1.4 4.53E-2 0.7
16 7.65E+1 1.0 2.95E-1 2.0 1.30E-3 1.1 2.11E+3 1.0 9.11 2.0 1.62E-2 1.5
32 3.83E+1 1.0 7.38E-2 2.0 6.50E-4 1.0 1.06E+3 1.0 2.28 2.0 8.10E-3 1.0
[1]

Hong Seng Sim, Wah June Leong, Chuei Yee Chen, Siti Nur Iqmal Ibrahim. Multi-step spectral gradient methods with modified weak secant relation for large scale unconstrained optimization. Numerical Algebra, Control & Optimization, 2018, 8 (3) : 377-387. doi: 10.3934/naco.2018024

[2]

Daoyuan Fang, Ting Zhang. Compressible Navier-Stokes equations with vacuum state in one dimension. Communications on Pure & Applied Analysis, 2004, 3 (4) : 675-694. doi: 10.3934/cpaa.2004.3.675

[3]

Carlos Fresneda-Portillo, Sergey E. Mikhailov. Analysis of Boundary-Domain Integral Equations to the mixed BVP for a compressible stokes system with variable viscosity. Communications on Pure & Applied Analysis, 2019, 18 (6) : 3059-3088. doi: 10.3934/cpaa.2019137

[4]

Thomas Y. Hou, Ruo Li. Nonexistence of locally self-similar blow-up for the 3D incompressible Navier-Stokes equations. Discrete & Continuous Dynamical Systems - A, 2007, 18 (4) : 637-642. doi: 10.3934/dcds.2007.18.637

[5]

Sandrine Anthoine, Jean-François Aujol, Yannick Boursier, Clothilde Mélot. Some proximal methods for Poisson intensity CBCT and PET. Inverse Problems & Imaging, 2012, 6 (4) : 565-598. doi: 10.3934/ipi.2012.6.565

[6]

Arseny Egorov. Morse coding for a Fuchsian group of finite covolume. Journal of Modern Dynamics, 2009, 3 (4) : 637-646. doi: 10.3934/jmd.2009.3.637

[7]

Armin Lechleiter, Tobias Rienmüller. Factorization method for the inverse Stokes problem. Inverse Problems & Imaging, 2013, 7 (4) : 1271-1293. doi: 10.3934/ipi.2013.7.1271

[8]

Ronald E. Mickens. Positivity preserving discrete model for the coupled ODE's modeling glycolysis. Conference Publications, 2003, 2003 (Special) : 623-629. doi: 10.3934/proc.2003.2003.623

[9]

Alina Chertock, Alexander Kurganov, Mária Lukáčová-Medvi${\rm{\check{d}}}$ová, Șeyma Nur Özcan. An asymptotic preserving scheme for kinetic chemotaxis models in two space dimensions. Kinetic & Related Models, 2019, 12 (1) : 195-216. doi: 10.3934/krm.2019009

[10]

Hakan Özadam, Ferruh Özbudak. A note on negacyclic and cyclic codes of length $p^s$ over a finite field of characteristic $p$. Advances in Mathematics of Communications, 2009, 3 (3) : 265-271. doi: 10.3934/amc.2009.3.265

[11]

Sergi Simon. Linearised higher variational equations. Discrete & Continuous Dynamical Systems - A, 2014, 34 (11) : 4827-4854. doi: 10.3934/dcds.2014.34.4827

[12]

Jaume Llibre, Luci Any Roberto. On the periodic solutions of a class of Duffing differential equations. Discrete & Continuous Dynamical Systems - A, 2013, 33 (1) : 277-282. doi: 10.3934/dcds.2013.33.277

[13]

María J. Garrido-Atienza, Bohdan Maslowski, Jana  Šnupárková. Semilinear stochastic equations with bilinear fractional noise. Discrete & Continuous Dynamical Systems - B, 2016, 21 (9) : 3075-3094. doi: 10.3934/dcdsb.2016088

[14]

Matthias Erbar, Jan Maas. Gradient flow structures for discrete porous medium equations. Discrete & Continuous Dynamical Systems - A, 2014, 34 (4) : 1355-1374. doi: 10.3934/dcds.2014.34.1355

[15]

Qiang Guo, Dong Liang. An adaptive wavelet method and its analysis for parabolic equations. Numerical Algebra, Control & Optimization, 2013, 3 (2) : 327-345. doi: 10.3934/naco.2013.3.327

[16]

Madalina Petcu, Roger Temam. The one dimensional shallow water equations with Dirichlet boundary conditions on the velocity. Discrete & Continuous Dynamical Systems - S, 2011, 4 (1) : 209-222. doi: 10.3934/dcdss.2011.4.209

[17]

Zhouxin Li, Yimin Zhang. Ground states for a class of quasilinear Schrödinger equations with vanishing potentials. Communications on Pure & Applied Analysis, 2021, 20 (2) : 933-954. doi: 10.3934/cpaa.2020298

[18]

Yimin Zhang, Youjun Wang, Yaotian Shen. Solutions for quasilinear Schrödinger equations with critical Sobolev-Hardy exponents. Communications on Pure & Applied Analysis, 2011, 10 (4) : 1037-1054. doi: 10.3934/cpaa.2011.10.1037

[19]

Boris Kramer, John R. Singler. A POD projection method for large-scale algebraic Riccati equations. Numerical Algebra, Control & Optimization, 2016, 6 (4) : 413-435. doi: 10.3934/naco.2016018

[20]

Bernold Fiedler, Carlos Rocha, Matthias Wolfrum. Sturm global attractors for $S^1$-equivariant parabolic equations. Networks & Heterogeneous Media, 2012, 7 (4) : 617-659. doi: 10.3934/nhm.2012.7.617

 Impact Factor: 0.263

Metrics

  • PDF downloads (93)
  • HTML views (213)
  • Cited by (0)

Other articles
by authors

[Back to Top]