March  2021, 29(1): 1897-1923. doi: 10.3934/era.2020097

A weak Galerkin finite element method for nonlinear conservation laws

1. 

Department of Mathematics, University of Arkansas at Little Rock, Little Rock, AR 72204, USA

2. 

Department of Mathematical Sciences, University of Delaware, Newark, DE 19716, USA

3. 

College of Mathematics, Physics and Information Engineering, Jiaxing University, Jiaxing, Zhejiang 314001, China

* Corresponding author: Xiu Ye

Received  April 2020 Revised  July 2020 Published  September 2020

Fund Project: The first author is supported in part by NSF grant DMS-1620016. The third author is supported in part by Zhejiang provincial NSF of China grant LY19A010008

A weak Galerkin (WG) finite element method is presented for nonlinear conservation laws. There are two built-in parameters in this WG framework. Different choices of the parameters will lead to different approaches for solving hyperbolic conservation laws. The convergence analysis is obtained for the forward Euler time discrete and the third order explicit TVDRK time discrete WG schemes respectively. The theoretical results are verified by numerical experiments.

Citation: Xiu Ye, Shangyou Zhang, Peng Zhu. A weak Galerkin finite element method for nonlinear conservation laws. Electronic Research Archive, 2021, 29 (1) : 1897-1923. doi: 10.3934/era.2020097
References:
[1]

B. Cockburn and C.-W. Shu, TVB Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws. Ⅱ. General framework, Math. Comp., 52 (1989), 411-435.  doi: 10.2307/2008474.  Google Scholar

[2]

B. Cockburn and C.-W. Shu, Runge-Kutta discontinuous Galerkin methods for convection-dominated problems, J. Sci. Comput., 16 (2001), 173-261.  doi: 10.1023/A:1012873910884.  Google Scholar

[3]

S. GottliebC.-W. Shu and E. Tadmor, Strong stability-preserving high-order time discretization methods, SIAM Rev., 43 (2001), 89-112.  doi: 10.1137/S003614450036757X.  Google Scholar

[4]

A. HartenB. EngquistS. Osher and S. R. Chakravarthy, Uniformly high-order accurate essentially non-oscillatory schemes. Ⅲ, J. Comput. Phys., 71 (1987), 231-303.  doi: 10.1016/0021-9991(87)90031-3.  Google Scholar

[5]

G. S. Jiang and C.-W. Shu, On cell entropy inequality for discontinuous Galerkin methods, Math. Comp., 62 (1994), 531-538.  doi: 10.1090/S0025-5718-1994-1223232-7.  Google Scholar

[6]

M.-Y. Kim, A discontinuous Galerkin method with Lagrange multiplier for hyperbolic conservation laws with boundary conditions, Comput. Math. Appl., 70 (2015), 488-506.  doi: 10.1016/j.camwa.2015.05.003.  Google Scholar

[7]

M.-Y. Kim, High order DG-DGLM method for hyperbolic conservation laws, Comput. Math. Appl., 75 (2018), 4458-4489.  doi: 10.1016/j.camwa.2018.03.043.  Google Scholar

[8]

J. LiX. Ye and S. Zhang, A weak Galerkin least-squares finite element method for div-curl systems, J. Comput. Phys., 363 (2018), 79-86.  doi: 10.1016/j.jcp.2018.02.036.  Google Scholar

[9]

G. LinJ. LiuL. Mu and X. Ye, Weak Galerkin finite element methods for Darcy flow: Anisotropy and heterogeneity, J. Comput. Phys., 276 (2014), 422-437.  doi: 10.1016/j.jcp.2014.07.001.  Google Scholar

[10]

R. LinX. YeS. Zhang and P. Zhu, A weak Galerkin finite element method for singularly perturbed convection-diffusion-reaction problems, SIAM J. Numer. Anal., 56 (2018), 1482-1497.  doi: 10.1137/17M1152528.  Google Scholar

[11]

X. MengC.-W. Shu and B. Wu, Optimal error estimates for discontinuous Galerkin methods based on upwind-biased fluxes for linear hyperbolic equations, Math. Comp., 85 (2016), 1225-1261.  doi: 10.1090/mcom/3022.  Google Scholar

[12]

L. MuJ. Wang and X. Ye, A new weak Galerkin finite element method for the Helmholtz equation, IMA J. Numer. Anal., 35 (2015), 1228-1255.  doi: 10.1093/imanum/dru026.  Google Scholar

[13]

L. MuJ. Wang and X. Ye, Weak Galerkin finite element methods for the biharmonic equation on polytopal meshes, Numer. Methods Partial Differential Equations, 30 (2014), 1003-1029.  doi: 10.1002/num.21855.  Google Scholar

[14]

L. MuJ. Wang and X. Ye, Weak Galerkin finite element methods on polytopal meshes, Int. J. Numer. Anal. Model., 12 (2015), 31-53.   Google Scholar

[15]

L. MuJ. WangX. Ye and S. Zhang, A weak Galerkin finite element method for the Maxwell equations, J. Sci. Comput., 65 (2015), 363-386.  doi: 10.1007/s10915-014-9964-4.  Google Scholar

[16]

L. MuJ. WangX. Ye and S. Zhao, A new weak Galerkin finite element method for elliptic interface problems, J. Comput. Phys., 325 (2016), 157-173.  doi: 10.1016/j.jcp.2016.08.024.  Google Scholar

[17]

S. ShieldsJ. Li and E. A. Machorro, Weak Galerkin methods for time-dependent Maxwell's equations, Comput. Math. Appl., 74 (2017), 2106-2124.  doi: 10.1016/j.camwa.2017.07.047.  Google Scholar

[18]

J. Wang and X. Ye, A weak Galerkin finite element method for second-order elliptic problems, J. Comput. Appl. Math., 241 (2013), 103-115.  doi: 10.1016/j.cam.2012.10.003.  Google Scholar

[19]

J. Wang and X. Ye, A weak Galerkin mixed finite element method for second order elliptic problems, Math. Comp., 83 (2014), 2101-2126.  doi: 10.1090/S0025-5718-2014-02852-4.  Google Scholar

[20]

J. Wang and X. Ye, A weak Galerkin finite element method for the Stokes equations, Adv. Comput. Math., 42 (2016), 155-174.  doi: 10.1007/s10444-015-9415-2.  Google Scholar

[21]

Q. ZhaiR. ZhangN. Malluwawadu and S. Hussain, The weak Galerkin method for linear hyperbolic equation, Commun. Comput. Phys., 24 (2018), 152-166.  doi: 10.4208/cicp.oa-2017-0052.  Google Scholar

[22]

Q. Zhang and C.-W. Shu, Error estimates to smooth solutions of Runge-Kutta discontinuous Galerkin methods for scalar conservation laws, SIAM J. Numer. Anal., 42 (2004), 641-666.  doi: 10.1137/S0036142902404182.  Google Scholar

[23]

Q. Zhang and C.-W. Shu, Stability analysis and a priori error estimates of the third order explicit Runge-Kutta discontinuous Galerkin method for scalar conservation laws, SIAM J. Numer. Anal., 48 (2010), 1038-1063.  doi: 10.1137/090771363.  Google Scholar

show all references

References:
[1]

B. Cockburn and C.-W. Shu, TVB Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws. Ⅱ. General framework, Math. Comp., 52 (1989), 411-435.  doi: 10.2307/2008474.  Google Scholar

[2]

B. Cockburn and C.-W. Shu, Runge-Kutta discontinuous Galerkin methods for convection-dominated problems, J. Sci. Comput., 16 (2001), 173-261.  doi: 10.1023/A:1012873910884.  Google Scholar

[3]

S. GottliebC.-W. Shu and E. Tadmor, Strong stability-preserving high-order time discretization methods, SIAM Rev., 43 (2001), 89-112.  doi: 10.1137/S003614450036757X.  Google Scholar

[4]

A. HartenB. EngquistS. Osher and S. R. Chakravarthy, Uniformly high-order accurate essentially non-oscillatory schemes. Ⅲ, J. Comput. Phys., 71 (1987), 231-303.  doi: 10.1016/0021-9991(87)90031-3.  Google Scholar

[5]

G. S. Jiang and C.-W. Shu, On cell entropy inequality for discontinuous Galerkin methods, Math. Comp., 62 (1994), 531-538.  doi: 10.1090/S0025-5718-1994-1223232-7.  Google Scholar

[6]

M.-Y. Kim, A discontinuous Galerkin method with Lagrange multiplier for hyperbolic conservation laws with boundary conditions, Comput. Math. Appl., 70 (2015), 488-506.  doi: 10.1016/j.camwa.2015.05.003.  Google Scholar

[7]

M.-Y. Kim, High order DG-DGLM method for hyperbolic conservation laws, Comput. Math. Appl., 75 (2018), 4458-4489.  doi: 10.1016/j.camwa.2018.03.043.  Google Scholar

[8]

J. LiX. Ye and S. Zhang, A weak Galerkin least-squares finite element method for div-curl systems, J. Comput. Phys., 363 (2018), 79-86.  doi: 10.1016/j.jcp.2018.02.036.  Google Scholar

[9]

G. LinJ. LiuL. Mu and X. Ye, Weak Galerkin finite element methods for Darcy flow: Anisotropy and heterogeneity, J. Comput. Phys., 276 (2014), 422-437.  doi: 10.1016/j.jcp.2014.07.001.  Google Scholar

[10]

R. LinX. YeS. Zhang and P. Zhu, A weak Galerkin finite element method for singularly perturbed convection-diffusion-reaction problems, SIAM J. Numer. Anal., 56 (2018), 1482-1497.  doi: 10.1137/17M1152528.  Google Scholar

[11]

X. MengC.-W. Shu and B. Wu, Optimal error estimates for discontinuous Galerkin methods based on upwind-biased fluxes for linear hyperbolic equations, Math. Comp., 85 (2016), 1225-1261.  doi: 10.1090/mcom/3022.  Google Scholar

[12]

L. MuJ. Wang and X. Ye, A new weak Galerkin finite element method for the Helmholtz equation, IMA J. Numer. Anal., 35 (2015), 1228-1255.  doi: 10.1093/imanum/dru026.  Google Scholar

[13]

L. MuJ. Wang and X. Ye, Weak Galerkin finite element methods for the biharmonic equation on polytopal meshes, Numer. Methods Partial Differential Equations, 30 (2014), 1003-1029.  doi: 10.1002/num.21855.  Google Scholar

[14]

L. MuJ. Wang and X. Ye, Weak Galerkin finite element methods on polytopal meshes, Int. J. Numer. Anal. Model., 12 (2015), 31-53.   Google Scholar

[15]

L. MuJ. WangX. Ye and S. Zhang, A weak Galerkin finite element method for the Maxwell equations, J. Sci. Comput., 65 (2015), 363-386.  doi: 10.1007/s10915-014-9964-4.  Google Scholar

[16]

L. MuJ. WangX. Ye and S. Zhao, A new weak Galerkin finite element method for elliptic interface problems, J. Comput. Phys., 325 (2016), 157-173.  doi: 10.1016/j.jcp.2016.08.024.  Google Scholar

[17]

S. ShieldsJ. Li and E. A. Machorro, Weak Galerkin methods for time-dependent Maxwell's equations, Comput. Math. Appl., 74 (2017), 2106-2124.  doi: 10.1016/j.camwa.2017.07.047.  Google Scholar

[18]

J. Wang and X. Ye, A weak Galerkin finite element method for second-order elliptic problems, J. Comput. Appl. Math., 241 (2013), 103-115.  doi: 10.1016/j.cam.2012.10.003.  Google Scholar

[19]

J. Wang and X. Ye, A weak Galerkin mixed finite element method for second order elliptic problems, Math. Comp., 83 (2014), 2101-2126.  doi: 10.1090/S0025-5718-2014-02852-4.  Google Scholar

[20]

J. Wang and X. Ye, A weak Galerkin finite element method for the Stokes equations, Adv. Comput. Math., 42 (2016), 155-174.  doi: 10.1007/s10444-015-9415-2.  Google Scholar

[21]

Q. ZhaiR. ZhangN. Malluwawadu and S. Hussain, The weak Galerkin method for linear hyperbolic equation, Commun. Comput. Phys., 24 (2018), 152-166.  doi: 10.4208/cicp.oa-2017-0052.  Google Scholar

[22]

Q. Zhang and C.-W. Shu, Error estimates to smooth solutions of Runge-Kutta discontinuous Galerkin methods for scalar conservation laws, SIAM J. Numer. Anal., 42 (2004), 641-666.  doi: 10.1137/S0036142902404182.  Google Scholar

[23]

Q. Zhang and C.-W. Shu, Stability analysis and a priori error estimates of the third order explicit Runge-Kutta discontinuous Galerkin method for scalar conservation laws, SIAM J. Numer. Anal., 48 (2010), 1038-1063.  doi: 10.1137/090771363.  Google Scholar

Figure 1.  WG solution for Example 2, $ T = 1/\pi, \lambda_1 = 2,\lambda_2 = 1,N = 128 $
Figure 2.  The $ P_1 $ WG solution and DG solution for Example 3, $ T = 2\pi, N = 512 $
Table 1.  $ L^2 $ errors and corresponding convergence rates of Example 1. $ T = 2\pi $, $ \lambda_1 = \lambda_2 = 1 $
$ P_1 $ element $ P_2 $ element $ P_3 $ element
N $ \|u-u_0\| $ Rate $ \|u-u_0\| $ Rate $ \|u-u_0\| $ Rate
8 1.29E-01 3.36E-03 2.66E-04
16 3.02E-02 2.10 3.99E-04 3.08 1.94E-05 3.78
32 7.22E-03 2.06 4.93E-05 3.02 1.27E-06 3.93
64 1.78E-03 2.02 6.14E-06 3.00 8.06E-08 3.98
128 4.42E-04 2.01 7.67E-07 3.00 5.06E-09 4.00
$ P_1 $ element $ P_2 $ element $ P_3 $ element
N $ \|u-u_0\| $ Rate $ \|u-u_0\| $ Rate $ \|u-u_0\| $ Rate
8 1.29E-01 3.36E-03 2.66E-04
16 3.02E-02 2.10 3.99E-04 3.08 1.94E-05 3.78
32 7.22E-03 2.06 4.93E-05 3.02 1.27E-06 3.93
64 1.78E-03 2.02 6.14E-06 3.00 8.06E-08 3.98
128 4.42E-04 2.01 7.67E-07 3.00 5.06E-09 4.00
Table 2.  $ L^2 $ errors and corresponding convergence rates of Example 2. $ T = 0.2 $, $ \lambda_1 = \lambda_2 = 2.5 $
$ P_1 $ element $ P_2 $ element $ P_3 $ element
N $ \|u-u_0\| $ Rate $ \|u-u_0\| $ Rate $ \|u-u_0\| $ Rate
8 1.68E-02 6.60E-03 1.89E-03
16 6.11E-03 1.46 7.86E-04 3.07 2.22E-04 3.09
32 1.42E-03 2.10 1.63E-04 2.27 9.96E-06 4.48
64 3.49E-04 2.03 2.85E-05 2.51 8.19E-07 3.60
128 8.67E-05 2.01 4.98E-06 2.51 5.81E-08 3.82
$ P_1 $ element $ P_2 $ element $ P_3 $ element
N $ \|u-u_0\| $ Rate $ \|u-u_0\| $ Rate $ \|u-u_0\| $ Rate
8 1.68E-02 6.60E-03 1.89E-03
16 6.11E-03 1.46 7.86E-04 3.07 2.22E-04 3.09
32 1.42E-03 2.10 1.63E-04 2.27 9.96E-06 4.48
64 3.49E-04 2.03 2.85E-05 2.51 8.19E-07 3.60
128 8.67E-05 2.01 4.98E-06 2.51 5.81E-08 3.82
Table 3.  $ L^2 $ errors and corresponding convergence rates of Example 3. $ T = 2\pi $, $ \lambda_1 = 2,\lambda_2 = 1 $
$ P_1 $ element $ P_2 $ element
N $ \|u-u_0\| $ Rate $ \|u-u_0\| $ Rate
8 5.93E-01 4.23E-01
16 5.01E-01 0.24 3.25E-01 0.38
32 3.93E-01 0.35 2.52E-01 0.37
64 3.26E-01 0.27 1.98E-01 0.35
128 2.72E-01 0.26 1.58E-01 0.33
256 2.26E-01 0.27 1.27E-01 0.32
512 1.89E-01 0.26 1.03E-01 0.30
$ P_1 $ element $ P_2 $ element
N $ \|u-u_0\| $ Rate $ \|u-u_0\| $ Rate
8 5.93E-01 4.23E-01
16 5.01E-01 0.24 3.25E-01 0.38
32 3.93E-01 0.35 2.52E-01 0.37
64 3.26E-01 0.27 1.98E-01 0.35
128 2.72E-01 0.26 1.58E-01 0.33
256 2.26E-01 0.27 1.27E-01 0.32
512 1.89E-01 0.26 1.03E-01 0.30
[1]

Lunji Song, Wenya Qi, Kaifang Liu, Qingxian Gu. A new over-penalized weak galerkin finite element method. Part Ⅱ: Elliptic interface problems. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2581-2598. doi: 10.3934/dcdsb.2020196

[2]

Hong Seng Sim, Wah June Leong, Chuei Yee Chen, Siti Nur Iqmal Ibrahim. Multi-step spectral gradient methods with modified weak secant relation for large scale unconstrained optimization. Numerical Algebra, Control & Optimization, 2018, 8 (3) : 377-387. doi: 10.3934/naco.2018024

[3]

Kaifang Liu, Lunji Song, Shan Zhao. A new over-penalized weak galerkin method. Part Ⅰ: Second-order elliptic problems. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2411-2428. doi: 10.3934/dcdsb.2020184

[4]

Murat Uzunca, Ayşe Sarıaydın-Filibelioǧlu. Adaptive discontinuous galerkin finite elements for advective Allen-Cahn equation. Numerical Algebra, Control & Optimization, 2021, 11 (2) : 269-281. doi: 10.3934/naco.2020025

[5]

Prasanta Kumar Barik, Ankik Kumar Giri, Rajesh Kumar. Mass-conserving weak solutions to the coagulation and collisional breakage equation with singular rates. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2021009

[6]

Marita Holtmannspötter, Arnd Rösch, Boris Vexler. A priori error estimates for the space-time finite element discretization of an optimal control problem governed by a coupled linear PDE-ODE system. Mathematical Control & Related Fields, 2021  doi: 10.3934/mcrf.2021014

[7]

Sara Munday. On the derivative of the $\alpha$-Farey-Minkowski function. Discrete & Continuous Dynamical Systems - A, 2014, 34 (2) : 709-732. doi: 10.3934/dcds.2014.34.709

[8]

Sandrine Anthoine, Jean-François Aujol, Yannick Boursier, Clothilde Mélot. Some proximal methods for Poisson intensity CBCT and PET. Inverse Problems & Imaging, 2012, 6 (4) : 565-598. doi: 10.3934/ipi.2012.6.565

[9]

Arseny Egorov. Morse coding for a Fuchsian group of finite covolume. Journal of Modern Dynamics, 2009, 3 (4) : 637-646. doi: 10.3934/jmd.2009.3.637

[10]

Changpin Li, Zhiqiang Li. Asymptotic behaviors of solution to partial differential equation with Caputo–Hadamard derivative and fractional Laplacian: Hyperbolic case. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021023

[11]

Hakan Özadam, Ferruh Özbudak. A note on negacyclic and cyclic codes of length $p^s$ over a finite field of characteristic $p$. Advances in Mathematics of Communications, 2009, 3 (3) : 265-271. doi: 10.3934/amc.2009.3.265

[12]

Zengyun Wang, Jinde Cao, Zuowei Cai, Lihong Huang. Finite-time stability of impulsive differential inclusion: Applications to discontinuous impulsive neural networks. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2677-2692. doi: 10.3934/dcdsb.2020200

 Impact Factor: 0.263

Metrics

  • PDF downloads (69)
  • HTML views (205)
  • Cited by (0)

Other articles
by authors

[Back to Top]