June  2021, 29(2): 2187-2221. doi: 10.3934/era.2020112

Pullback attractors for stochastic recurrent neural networks with discrete and distributed delays

1. 

School of Mathematics and Statistics, Gansu Key Laboratory of Applied Mathematics and Complex Systems, Lanzhou University, Lanzhou 730000, China

2. 

Mathematisches Institut, Universität Tübingen, Tübingen 72076, Germany

* Corresponding author: Yejuan Wang

Received  April 2020 Revised  August 2020 Published  June 2021 Early access  October 2020

Fund Project: This work was supported by NSF of China (Grant Nos. 41875084, 11571153), the Fundamental Research Funds for the Central Universities under Grant Nos. lzujbky-2018-it58 and lzujbky-2018-ot03

In this paper, we investigate a class of stochastic recurrent neural networks with discrete and distributed delays for both biological and mathematical interests. We do not assume any Lipschitz condition on the nonlinear term, just a continuity assumption together with growth conditions so that the uniqueness of the Cauchy problem fails to be true. Moreover, the existence of pullback attractors with or without periodicity is presented for the multi-valued noncompact random dynamical system. In particular, a new method for checking the asymptotical compactness of solutions to the class of nonautonomous stochastic lattice systems with infinite delay is used.

Citation: Meiyu Sui, Yejuan Wang, Peter E. Kloeden. Pullback attractors for stochastic recurrent neural networks with discrete and distributed delays. Electronic Research Archive, 2021, 29 (2) : 2187-2221. doi: 10.3934/era.2020112
References:
[1]

J.-P. Aubin and H. Franskowska, Set-Valued Analysis, Systems & Control: Foundations & Applications, 2. Birkhäuser Boston, Inc., Boston, MA, 1990.  Google Scholar

[2]

P. Balasubramaniam and R. Rakkiyappan, Global asymptotic stability of stochastic recurrent neural networks with multiple discrete delays and unbounded distributed delays, Appl. Math. Comput., 204 (2008), 680-686.  doi: 10.1016/j.amc.2008.05.001.  Google Scholar

[3]

T. CaraballoM. J. Garrido-AtienzaB. Schmalfuss and J. Valero, Non-autonomous and random attractors for delay random semilinear equations without uniqueness, Discrete Contin. Dyn. Syst., 21 (2008), 415-443.  doi: 10.3934/dcds.2008.21.415.  Google Scholar

[4]

T. Caraballo, F. Morillas and J. Valero, Pullback attractors of stochastic lattice dynamical systems with a multiplicative noise and non-Lipschitz nonlinearities, Differential and Difference Equations with Applications, Springer Proc. Math. Stat., Springer, New York, 47 (2013), 341-349. doi: 10.1007/978-1-4614-7333-6_27.  Google Scholar

[5]

T. CaraballoF. Morillas and J. Valero, On differential equations with delay in Banach spaces and attractors for retarded lattice dynamical systems, Discrete Contin. Dyn. Syst., 34 (2014), 51-77.  doi: 10.3934/dcds.2014.34.51.  Google Scholar

[6]

D. N. Cheban, Global Attractors of Non-Autonomous Dissipative Dynamical Systems: Interdisciplinary Mathematical Sciences, 1, World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2004. doi: 10.1142/9789812563088.  Google Scholar

[7]

T. Chen, Global exponential stability of delayed Hopfield neural networks, Neural Netw., 14 (2001), 977-980.   Google Scholar

[8]

G. ChenD. LiL. ShiO. van Gaans and S. Verduyn Lunel, Stability results for stochastic delayed recurrent neural networks with discrete and distributed delays, J. Differential Equations, 264 (2018), 3864-3898.  doi: 10.1016/j.jde.2017.11.032.  Google Scholar

[9]

A. Cichocki and R. Unbehauen, Neural Networks for Optimization and Signal Processing, Wiley, Chichester, 1993. Google Scholar

[10]

H. Crauel and F. Flandoli, Attractors for random dynamical systems, Probab. Theory Related Fields, 100 (1994), 365-393.  doi: 10.1007/BF01193705.  Google Scholar

[11]

F. Flandoli and B. Schmalfuss, Random attractors for the $3$D stochastic Navier-Stokes equation with multiplicative white noise, Stochast. Stochast. Rep., 59 (1996), 21-45.  doi: 10.1080/17442509608834083.  Google Scholar

[12]

Y. Guo, Mean square global asymptotic stability of stochastic recurrent neural networks with distributed delays, Appl. Math. Comput., 215 (2009), 791-795.  doi: 10.1016/j.amc.2009.06.002.  Google Scholar

[13]

X. Han and P. E. Kloeden, Non-autonomous lattice systems with switching effects and delayed recovery, J. Differential Equations, 261 (2016), 2986-3009.  doi: 10.1016/j.jde.2016.05.015.  Google Scholar

[14]

S. Haykin, Neural Networks: A Comprehensive Foundation, Prentice-Hall, Englewood Cliffs, 1994. Google Scholar

[15]

J. HuS. Zhong and L. Liang, Exponential stability analysis of stochastic delayed cellular neural network, Chaos Solitons Fractals, 27 (2006), 1006-1010.  doi: 10.1016/j.chaos.2005.04.067.  Google Scholar

[16]

C. HuangY. He and H. Wang, Mean square exponential stability of stochastic recurrent neural networks with time-varying delays, Comput. Math. Appl., 56 (2008), 1773-1778.  doi: 10.1016/j.camwa.2008.04.004.  Google Scholar

[17]

P. E. Kloeden, Pullback attractors of nonautonomous semidynamical systems, Stoch. Dyn., 3 (2003), 101-112.  doi: 10.1142/S0219493703000632.  Google Scholar

[18]

X. Li and X. Fu, Stability analysis of stochastic functional differential equations with infinite delay and its application to recurrent neural networks, J. Comput. Appl. Math., 234 (2010), 407-417.  doi: 10.1016/j.cam.2009.12.033.  Google Scholar

[19]

X. LiF. LiX. ZhangC. Yang and W. Gui, Exponential stability analysis for delayed semi-Markovian recurrent neural networks: A homogeneous polynomial approach, IEEE Trans. Neural Netw. Learn. Syst., 29 (2018), 6374-6384.  doi: 10.1109/TNNLS.2018.2830789.  Google Scholar

[20]

G. NagamaniS. Ramasamy and P. Balasubramaniam, Robust dissipativity and passivity analysis for discrete-time stochastic neural networks with time-varying delay, Complexity, 21 (2015), 47-58.  doi: 10.1002/cplx.21614.  Google Scholar

[21]

G. Peng and L. Huang, Exponential stability of hybrid stochastic recurrent neural networks with time-varying delays, Nonlinear Anal. Hybrid Syst., 2 (2008), 1198-1204.  doi: 10.1016/j.nahs.2008.09.012.  Google Scholar

[22]

T. Roska and L. O. Chua, Cellular neural networks with nonlinear and delay-type template elements and non-uniform grids, Int. J. Circuit Theory Appl., 20 (1992), 469-481.   Google Scholar

[23]

R. SakthivelR. Samidurai and S. M. Anthoni, Asymptotic stability of stochastic delayed recurrent neural networks with impulsive effects, J. Optim. Theory Appl., 147 (2010), 583-596.  doi: 10.1007/s10957-010-9728-8.  Google Scholar

[24]

B. Schmalfuss, Measure Attractors of the Stochastic Navier-Stokes Equation, Report 258, Universität Bremen, Fachbereiche Mathematik/Informatik, Elektrotechnik/Physik, Forschungsschwerpunkt Dynamische Systeme, Bremen, 1991. Google Scholar

[25]

Y. Sun and J. Cao, $P$th moment exponential stability of stochastic recurrent neural networks with time-varying delays, Nonlinear Anal. Real World Appl., 8 (2007), 1171-1185.  doi: 10.1016/j.nonrwa.2006.06.009.  Google Scholar

[26]

M. Syed Ali and M. Marudai, Stochastic stability of discrete-time uncertain recurrent neural networks with Markovian jumping and time-varying delays, Math. Comput. Modelling, 54 (2011), 1979-1988.  doi: 10.1016/j.mcm.2011.05.004.  Google Scholar

[27]

M. Syed Ali, Stochastic stability of uncertain recurrent neural networks with Markovian jumping parameters, Acta Math. Sci. Ser. B, 35 (2015), 1122-1136.  doi: 10.1016/S0252-9602(15)30044-8.  Google Scholar

[28]

P. Venetianer and T. Roska, Image compression by delayed CNNs, IEEE Trans. Circuits Syst. I, 45 (1998), 205-215.   Google Scholar

[29]

C. VidhyaS. Dharani and P. Balasubramaniam, Global asymptotic stability of stochastic reaction-diffusion recurrent neural networks with Markovian jumping parameters and mixed delays, J. Anal., 27 (2019), 277-292.  doi: 10.1007/s41478-018-0123-4.  Google Scholar

[30]

L. Wan and Q. Zhou, Almost sure exponential stability of stochastic recurrent neural networks with time-varying delays, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 20 (2010), 539-544.  doi: 10.1142/S0218127410025594.  Google Scholar

[31]

B. Wang, Sufficient and necessary criteria for existence of pullback attractors for non-compact random dynamical systems, J. Differential Equations, 253 (2012), 1544-1583. doi: 10.1016/j.jde.2012.05.015.  Google Scholar

[32]

Y. Wang and M. Sui, Finite lattice approximation of infinite lattice systems with delays and non-Lipschitz nonlinearities, Asymptot. Anal., 106 (2018), 169-203.  doi: 10.3233/ASY-171444.  Google Scholar

[33]

Y. Wang and J. Wang, Pullback attractors for multi-valued non-compact random dynamical systems generated by reaction-diffusion equations on an unbounded domain, J. Differential Equations, 259 (2015), 728-776.  doi: 10.1016/j.jde.2015.02.026.  Google Scholar

[34]

J. Wang, Y. Wang and D. Zhao, Pullback attractors for multi-valued non-compact random dynamical systems generated by semi-linear degenerate parabolic equations with unbounded delays, Stoch. Dyn., 16 (2016), 1750001, 49 pp. doi: 10.1142/S0219493717500010.  Google Scholar

[35]

S. ZhuW. Luo and Y. Shen, Robustness analysis for connection weight matrices of global exponential stability of stochastic delayed recurrent neural networks, Circuits Systems Signal Process, 33 (2014), 2065-2083.  doi: 10.1007/s00034-013-9735-8.  Google Scholar

show all references

References:
[1]

J.-P. Aubin and H. Franskowska, Set-Valued Analysis, Systems & Control: Foundations & Applications, 2. Birkhäuser Boston, Inc., Boston, MA, 1990.  Google Scholar

[2]

P. Balasubramaniam and R. Rakkiyappan, Global asymptotic stability of stochastic recurrent neural networks with multiple discrete delays and unbounded distributed delays, Appl. Math. Comput., 204 (2008), 680-686.  doi: 10.1016/j.amc.2008.05.001.  Google Scholar

[3]

T. CaraballoM. J. Garrido-AtienzaB. Schmalfuss and J. Valero, Non-autonomous and random attractors for delay random semilinear equations without uniqueness, Discrete Contin. Dyn. Syst., 21 (2008), 415-443.  doi: 10.3934/dcds.2008.21.415.  Google Scholar

[4]

T. Caraballo, F. Morillas and J. Valero, Pullback attractors of stochastic lattice dynamical systems with a multiplicative noise and non-Lipschitz nonlinearities, Differential and Difference Equations with Applications, Springer Proc. Math. Stat., Springer, New York, 47 (2013), 341-349. doi: 10.1007/978-1-4614-7333-6_27.  Google Scholar

[5]

T. CaraballoF. Morillas and J. Valero, On differential equations with delay in Banach spaces and attractors for retarded lattice dynamical systems, Discrete Contin. Dyn. Syst., 34 (2014), 51-77.  doi: 10.3934/dcds.2014.34.51.  Google Scholar

[6]

D. N. Cheban, Global Attractors of Non-Autonomous Dissipative Dynamical Systems: Interdisciplinary Mathematical Sciences, 1, World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2004. doi: 10.1142/9789812563088.  Google Scholar

[7]

T. Chen, Global exponential stability of delayed Hopfield neural networks, Neural Netw., 14 (2001), 977-980.   Google Scholar

[8]

G. ChenD. LiL. ShiO. van Gaans and S. Verduyn Lunel, Stability results for stochastic delayed recurrent neural networks with discrete and distributed delays, J. Differential Equations, 264 (2018), 3864-3898.  doi: 10.1016/j.jde.2017.11.032.  Google Scholar

[9]

A. Cichocki and R. Unbehauen, Neural Networks for Optimization and Signal Processing, Wiley, Chichester, 1993. Google Scholar

[10]

H. Crauel and F. Flandoli, Attractors for random dynamical systems, Probab. Theory Related Fields, 100 (1994), 365-393.  doi: 10.1007/BF01193705.  Google Scholar

[11]

F. Flandoli and B. Schmalfuss, Random attractors for the $3$D stochastic Navier-Stokes equation with multiplicative white noise, Stochast. Stochast. Rep., 59 (1996), 21-45.  doi: 10.1080/17442509608834083.  Google Scholar

[12]

Y. Guo, Mean square global asymptotic stability of stochastic recurrent neural networks with distributed delays, Appl. Math. Comput., 215 (2009), 791-795.  doi: 10.1016/j.amc.2009.06.002.  Google Scholar

[13]

X. Han and P. E. Kloeden, Non-autonomous lattice systems with switching effects and delayed recovery, J. Differential Equations, 261 (2016), 2986-3009.  doi: 10.1016/j.jde.2016.05.015.  Google Scholar

[14]

S. Haykin, Neural Networks: A Comprehensive Foundation, Prentice-Hall, Englewood Cliffs, 1994. Google Scholar

[15]

J. HuS. Zhong and L. Liang, Exponential stability analysis of stochastic delayed cellular neural network, Chaos Solitons Fractals, 27 (2006), 1006-1010.  doi: 10.1016/j.chaos.2005.04.067.  Google Scholar

[16]

C. HuangY. He and H. Wang, Mean square exponential stability of stochastic recurrent neural networks with time-varying delays, Comput. Math. Appl., 56 (2008), 1773-1778.  doi: 10.1016/j.camwa.2008.04.004.  Google Scholar

[17]

P. E. Kloeden, Pullback attractors of nonautonomous semidynamical systems, Stoch. Dyn., 3 (2003), 101-112.  doi: 10.1142/S0219493703000632.  Google Scholar

[18]

X. Li and X. Fu, Stability analysis of stochastic functional differential equations with infinite delay and its application to recurrent neural networks, J. Comput. Appl. Math., 234 (2010), 407-417.  doi: 10.1016/j.cam.2009.12.033.  Google Scholar

[19]

X. LiF. LiX. ZhangC. Yang and W. Gui, Exponential stability analysis for delayed semi-Markovian recurrent neural networks: A homogeneous polynomial approach, IEEE Trans. Neural Netw. Learn. Syst., 29 (2018), 6374-6384.  doi: 10.1109/TNNLS.2018.2830789.  Google Scholar

[20]

G. NagamaniS. Ramasamy and P. Balasubramaniam, Robust dissipativity and passivity analysis for discrete-time stochastic neural networks with time-varying delay, Complexity, 21 (2015), 47-58.  doi: 10.1002/cplx.21614.  Google Scholar

[21]

G. Peng and L. Huang, Exponential stability of hybrid stochastic recurrent neural networks with time-varying delays, Nonlinear Anal. Hybrid Syst., 2 (2008), 1198-1204.  doi: 10.1016/j.nahs.2008.09.012.  Google Scholar

[22]

T. Roska and L. O. Chua, Cellular neural networks with nonlinear and delay-type template elements and non-uniform grids, Int. J. Circuit Theory Appl., 20 (1992), 469-481.   Google Scholar

[23]

R. SakthivelR. Samidurai and S. M. Anthoni, Asymptotic stability of stochastic delayed recurrent neural networks with impulsive effects, J. Optim. Theory Appl., 147 (2010), 583-596.  doi: 10.1007/s10957-010-9728-8.  Google Scholar

[24]

B. Schmalfuss, Measure Attractors of the Stochastic Navier-Stokes Equation, Report 258, Universität Bremen, Fachbereiche Mathematik/Informatik, Elektrotechnik/Physik, Forschungsschwerpunkt Dynamische Systeme, Bremen, 1991. Google Scholar

[25]

Y. Sun and J. Cao, $P$th moment exponential stability of stochastic recurrent neural networks with time-varying delays, Nonlinear Anal. Real World Appl., 8 (2007), 1171-1185.  doi: 10.1016/j.nonrwa.2006.06.009.  Google Scholar

[26]

M. Syed Ali and M. Marudai, Stochastic stability of discrete-time uncertain recurrent neural networks with Markovian jumping and time-varying delays, Math. Comput. Modelling, 54 (2011), 1979-1988.  doi: 10.1016/j.mcm.2011.05.004.  Google Scholar

[27]

M. Syed Ali, Stochastic stability of uncertain recurrent neural networks with Markovian jumping parameters, Acta Math. Sci. Ser. B, 35 (2015), 1122-1136.  doi: 10.1016/S0252-9602(15)30044-8.  Google Scholar

[28]

P. Venetianer and T. Roska, Image compression by delayed CNNs, IEEE Trans. Circuits Syst. I, 45 (1998), 205-215.   Google Scholar

[29]

C. VidhyaS. Dharani and P. Balasubramaniam, Global asymptotic stability of stochastic reaction-diffusion recurrent neural networks with Markovian jumping parameters and mixed delays, J. Anal., 27 (2019), 277-292.  doi: 10.1007/s41478-018-0123-4.  Google Scholar

[30]

L. Wan and Q. Zhou, Almost sure exponential stability of stochastic recurrent neural networks with time-varying delays, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 20 (2010), 539-544.  doi: 10.1142/S0218127410025594.  Google Scholar

[31]

B. Wang, Sufficient and necessary criteria for existence of pullback attractors for non-compact random dynamical systems, J. Differential Equations, 253 (2012), 1544-1583. doi: 10.1016/j.jde.2012.05.015.  Google Scholar

[32]

Y. Wang and M. Sui, Finite lattice approximation of infinite lattice systems with delays and non-Lipschitz nonlinearities, Asymptot. Anal., 106 (2018), 169-203.  doi: 10.3233/ASY-171444.  Google Scholar

[33]

Y. Wang and J. Wang, Pullback attractors for multi-valued non-compact random dynamical systems generated by reaction-diffusion equations on an unbounded domain, J. Differential Equations, 259 (2015), 728-776.  doi: 10.1016/j.jde.2015.02.026.  Google Scholar

[34]

J. Wang, Y. Wang and D. Zhao, Pullback attractors for multi-valued non-compact random dynamical systems generated by semi-linear degenerate parabolic equations with unbounded delays, Stoch. Dyn., 16 (2016), 1750001, 49 pp. doi: 10.1142/S0219493717500010.  Google Scholar

[35]

S. ZhuW. Luo and Y. Shen, Robustness analysis for connection weight matrices of global exponential stability of stochastic delayed recurrent neural networks, Circuits Systems Signal Process, 33 (2014), 2065-2083.  doi: 10.1007/s00034-013-9735-8.  Google Scholar

[1]

Yejuan Wang, Peter E. Kloeden. The uniform attractor of a multi-valued process generated by reaction-diffusion delay equations on an unbounded domain. Discrete & Continuous Dynamical Systems, 2014, 34 (10) : 4343-4370. doi: 10.3934/dcds.2014.34.4343

[2]

Yejuan Wang. On the upper semicontinuity of pullback attractors for multi-valued noncompact random dynamical systems. Discrete & Continuous Dynamical Systems - B, 2016, 21 (10) : 3669-3708. doi: 10.3934/dcdsb.2016116

[3]

Zhigang Zeng, Tingwen Huang. New passivity analysis of continuous-time recurrent neural networks with multiple discrete delays. Journal of Industrial & Management Optimization, 2011, 7 (2) : 283-289. doi: 10.3934/jimo.2011.7.283

[4]

Mohamed Ali Hammami, Lassaad Mchiri, Sana Netchaoui, Stefanie Sonner. Pullback exponential attractors for differential equations with variable delays. Discrete & Continuous Dynamical Systems - B, 2020, 25 (1) : 301-319. doi: 10.3934/dcdsb.2019183

[5]

Udhayakumar Kandasamy, Rakkiyappan Rajan. Hopf bifurcation of a fractional-order octonion-valued neural networks with time delays. Discrete & Continuous Dynamical Systems - S, 2020, 13 (9) : 2537-2559. doi: 10.3934/dcdss.2020137

[6]

Yongkun Li, Bing Li. Pseudo compact almost automorphy of neutral type Clifford-valued neural networks with mixed delays. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021248

[7]

Leong-Kwan Li, Sally Shao, K. F. Cedric Yiu. Nonlinear dynamical system modeling via recurrent neural networks and a weighted state space search algorithm. Journal of Industrial & Management Optimization, 2011, 7 (2) : 385-400. doi: 10.3934/jimo.2011.7.385

[8]

Ruoxia Li, Huaiqin Wu, Xiaowei Zhang, Rong Yao. Adaptive projective synchronization of memristive neural networks with time-varying delays and stochastic perturbation. Mathematical Control & Related Fields, 2015, 5 (4) : 827-844. doi: 10.3934/mcrf.2015.5.827

[9]

Yangrong Li, Renhai Wang, Lianbing She. Backward controllability of pullback trajectory attractors with applications to multi-valued Jeffreys-Oldroyd equations. Evolution Equations & Control Theory, 2018, 7 (4) : 617-637. doi: 10.3934/eect.2018030

[10]

Ting Li. Pullback attractors for asymptotically upper semicompact non-autonomous multi-valued semiflows. Communications on Pure & Applied Analysis, 2007, 6 (1) : 279-285. doi: 10.3934/cpaa.2007.6.279

[11]

Zhiming Liu, Zhijian Yang. Global attractor of multi-valued operators with applications to a strongly damped nonlinear wave equation without uniqueness. Discrete & Continuous Dynamical Systems - B, 2020, 25 (1) : 223-240. doi: 10.3934/dcdsb.2019179

[12]

Jui-Pin Tseng. Global asymptotic dynamics of a class of nonlinearly coupled neural networks with delays. Discrete & Continuous Dynamical Systems, 2013, 33 (10) : 4693-4729. doi: 10.3934/dcds.2013.33.4693

[13]

Tingting Su, Xinsong Yang. Finite-time synchronization of competitive neural networks with mixed delays. Discrete & Continuous Dynamical Systems - B, 2016, 21 (10) : 3655-3667. doi: 10.3934/dcdsb.2016115

[14]

Cheng-Hsiung Hsu, Suh-Yuh Yang. Traveling wave solutions in cellular neural networks with multiple time delays. Conference Publications, 2005, 2005 (Special) : 410-419. doi: 10.3934/proc.2005.2005.410

[15]

Yejuan Wang, Tomás Caraballo. Morse decomposition for gradient-like multi-valued autonomous and nonautonomous dynamical systems. Discrete & Continuous Dynamical Systems - S, 2020, 13 (8) : 2303-2326. doi: 10.3934/dcdss.2020092

[16]

Josef Diblík, Radoslav Chupáč, Miroslava Růžičková. Existence of unbounded solutions of a linear homogenous system of differential equations with two delays. Discrete & Continuous Dynamical Systems - B, 2014, 19 (8) : 2447-2459. doi: 10.3934/dcdsb.2014.19.2447

[17]

Mustapha Yebdri. Existence of $ \mathcal{D}- $pullback attractor for an infinite dimensional dynamical system. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021036

[18]

Jong Yeoul Park, Jae Ug Jeong. Pullback attractors for a $2D$-non-autonomous incompressible non-Newtonian fluid with variable delays. Discrete & Continuous Dynamical Systems - B, 2016, 21 (8) : 2687-2702. doi: 10.3934/dcdsb.2016068

[19]

Ozlem Faydasicok. Further stability analysis of neutral-type Cohen-Grossberg neural networks with multiple delays. Discrete & Continuous Dynamical Systems - S, 2021, 14 (4) : 1245-1258. doi: 10.3934/dcdss.2020359

[20]

Siegfried Carl, Christoph Tietz. Quasilinear elliptic equations with measures and multi-valued lower order terms. Discrete & Continuous Dynamical Systems - S, 2018, 11 (2) : 193-212. doi: 10.3934/dcdss.2018012

2020 Impact Factor: 1.833

Metrics

  • PDF downloads (204)
  • HTML views (329)
  • Cited by (0)

Other articles
by authors

[Back to Top]