-
Previous Article
A multiscale stochastic criminal behavior model under a hybrid scheme
- ERA Home
- This Issue
-
Next Article
Ergodic measures of intermediate entropy for affine transformations of nilmanifolds
A generalization on derivations of Lie algebras
School of Mathematics and Statistics, Northeast Normal University, Changchun, China |
We initiate a study on a range of new generalized derivations of finite-dimensional Lie algebras over an algebraically closed field of characteristic zero. This new generalization of derivations has an analogue in the theory of associative prime rings and unites many well-known generalized derivations that have already appeared extensively in the study of Lie algebras and other nonassociative algebras. After exploiting fundamental properties, we introduce and analyze their interiors, especially focusing on the rationality of the corresponding Hilbert series. Applying techniques in computational ideal theory we develop an approach to explicitly compute these new generalized derivations for the three-dimensional special linear Lie algebra over the complex field.
References:
[1] |
K. I. Beida, M. Brešar and M. A. Chebotar,
Generalized functional identities with (anti-) automorphisms and derivations on prime rings. Ⅰ., J. Algebra, 215 (1999), 644-665.
doi: 10.1006/jabr.1998.7751. |
[2] |
H. E. Bell and L.-C. Kappe,
Rings in which derivations satisfy certain algebraic conditions, Acta Math. Hungar., 53 (1989), 339-346.
doi: 10.1007/BF01953371. |
[3] |
G. Benkart, A. I. Kostrikin and M. I. Kuznetsov,
Finite-dimensional simple Lie algebras with a nonsingular derivation, J. Algebra, 171 (1995), 894-916.
doi: 10.1006/jabr.1995.1041. |
[4] |
J. Bergen and P. Grzeszczuk,
Invariants of skew derivations, Proc. Amer. Math. Soc., 125 (1997), 3481-3488.
doi: 10.1090/S0002-9939-97-04045-8. |
[5] |
M. Brešar,
Centralizing mappings and derivations in prime rings, J. Algebra, 156 (1993), 385-394.
doi: 10.1006/jabr.1993.1080. |
[6] |
M. Brešar,
Near-derivations in Lie algebras, J. Algebra, 320 (2008), 3765-3772.
doi: 10.1016/j.jalgebra.2008.09.007. |
[7] |
D. Burde,
Left-symmetric algebras, or pre-Lie algebras in geometry and physics, Cent. Eur. J. Math., 4 (2006), 323-357.
doi: 10.2478/s11533-006-0014-9. |
[8] |
D. Burde and W. A. Moens,
Periodic derivations and prederivations of Lie algebras, J. Algebra, 357 (2012), 208-221.
doi: 10.1016/j.jalgebra.2012.02.015. |
[9] |
Y. Chen and R. Zhang, A commutative algebra approach to multiplicative Hom-Lie algebras, arXiv: 1907.02415. Google Scholar |
[10] |
C.-L. Chuang and T.-K. Lee,
Identities with a single skew derivation, J. Algebra, 288 (2005), 59-77.
doi: 10.1016/j.jalgebra.2003.12.032. |
[11] |
D. Cox, J. Little and D. O'Shea, Ideals, Varieties, and Algorithms. An Introduction to Computational Algebraic Geometry and Commutative Algebra, Third edition., Undergraduate Texts in Mathematics, Springer, New York, 2007.
doi: 10.1007/978-0-387-35651-8. |
[12] |
V. De Filippis and F. Wei,
$b$-generalized $(\alpha, \beta)$-derivations and $b$-generalized $(\alpha, \beta)$-biderivations of prime rings, Taiwanese J. Math., 22 (2018), 313-323.
doi: 10.11650/tjm/170903. |
[13] |
K. Erdmann and M. J. Wildon, Introduction to Lie Algebras, Springer Undergraduate Mathematics Series. Springer-Verlag London, Ltd., London, 2006.
doi: 10.1007/1-84628-490-2. |
[14] |
R. García-Delgado, G. Salgado and O. A. Sánchez-Valenzuela,
On 3-dimensional complex Hom-Lie algebras, J. Algebra, 555 (2020), 361-385.
doi: 10.1016/j.jalgebra.2020.03.005. |
[15] |
L. Guo, P. J. Cassidy, W. F. Keigher and W. Y. Sit, Differential Algebra and Related Topics, Proceedings of the International Workshop held at Rutgers University, Newark, NJ. World Scientific Publishing Co., Inc., River Edge, NJ, 2002.
doi: 10.1142/4768. |
[16] |
L. Guo and W. Keigher,
On differential Rota-Baxter algebras, J. Pure Appl. Algebra, 212 (2008), 522-540.
doi: 10.1016/j.jpaa.2007.06.008. |
[17] |
L. Guo and F. Li,
Structure of Hochschild cohomology of path algebras and differential formulation of Euler's polyhedron formula, Asian J. Math., 18 (2014), 545-572.
doi: 10.4310/AJM.2014.v18.n3.a9. |
[18] |
J. T. Hartwig, D. Larsson and S. D. Silvestrov,
Deformations of Lie algebras using $\sigma$-derivations, J. Algebra, 295 (2006), 314-361.
doi: 10.1016/j.jalgebra.2005.07.036. |
[19] |
B. Hvala,
Generalized derivations in rings, Comm. Algebra, 26 (1998), 1147-1166.
doi: 10.1080/00927879808826190. |
[20] |
N. Jacobson,
A note on automorphisms and derivations of Lie algebras, Proc. Amer. Math. Soc., 6 (1955), 281-283.
doi: 10.1090/S0002-9939-1955-0068532-9. |
[21] |
V. K. Kharchenko and A. Z. Popov,
Skew derivations of prime rings, Comm. Algebra, 20 (1992), 3321-3345.
doi: 10.1080/00927879208824517. |
[22] |
E. R. Kolchin, Differential algebra and algebraic groups, Pure and Applied Mathematics, Vol. 54. Academic Press, New York-London, 1973. |
[23] |
G. F. Leger and E. M. Luks,
Generalized derivations of Lie algebras, J. Algebra, 228 (2000), 165-203.
doi: 10.1006/jabr.1999.8250. |
[24] |
P. Novotný and J. Hrivnák,
On $(\alpha, \beta, \gamma)$-derivations of Lie algebras and corresponding invariant functions, J. Geom. Phys., 58 (2008), 208-217.
doi: 10.1016/j.geomphys.2007.10.005. |
[25] |
E. C. Posner,
Derivations in prime rings, Proc. Amer. Math. Soc., 8 (1957), 1093-1100.
doi: 10.1090/S0002-9939-1957-0095863-0. |
[26] |
J. F. Ritt, Differential Equations from the Algebraic Standpoint, American Mathematical Society Colloquium Publications, Vol. 14, American Mathematical Society, New York, 1932. |
[27] |
M. van der Put and M. F. Singer, Galois Theory of Linear Differential Equations, Grundlehren der Mathematischen Wissenschaften, Vol. 328, Springer-Verlag, Berlin, 2003.
doi: 10.1007/978-3-642-55750-7. |
[28] |
P. Zusmanovich,
On $\delta$-derivations of Lie algebras and superalgebras, J. Algebra, 324 (2010), 3470-3486.
doi: 10.1016/j.jalgebra.2010.09.032. |
show all references
References:
[1] |
K. I. Beida, M. Brešar and M. A. Chebotar,
Generalized functional identities with (anti-) automorphisms and derivations on prime rings. Ⅰ., J. Algebra, 215 (1999), 644-665.
doi: 10.1006/jabr.1998.7751. |
[2] |
H. E. Bell and L.-C. Kappe,
Rings in which derivations satisfy certain algebraic conditions, Acta Math. Hungar., 53 (1989), 339-346.
doi: 10.1007/BF01953371. |
[3] |
G. Benkart, A. I. Kostrikin and M. I. Kuznetsov,
Finite-dimensional simple Lie algebras with a nonsingular derivation, J. Algebra, 171 (1995), 894-916.
doi: 10.1006/jabr.1995.1041. |
[4] |
J. Bergen and P. Grzeszczuk,
Invariants of skew derivations, Proc. Amer. Math. Soc., 125 (1997), 3481-3488.
doi: 10.1090/S0002-9939-97-04045-8. |
[5] |
M. Brešar,
Centralizing mappings and derivations in prime rings, J. Algebra, 156 (1993), 385-394.
doi: 10.1006/jabr.1993.1080. |
[6] |
M. Brešar,
Near-derivations in Lie algebras, J. Algebra, 320 (2008), 3765-3772.
doi: 10.1016/j.jalgebra.2008.09.007. |
[7] |
D. Burde,
Left-symmetric algebras, or pre-Lie algebras in geometry and physics, Cent. Eur. J. Math., 4 (2006), 323-357.
doi: 10.2478/s11533-006-0014-9. |
[8] |
D. Burde and W. A. Moens,
Periodic derivations and prederivations of Lie algebras, J. Algebra, 357 (2012), 208-221.
doi: 10.1016/j.jalgebra.2012.02.015. |
[9] |
Y. Chen and R. Zhang, A commutative algebra approach to multiplicative Hom-Lie algebras, arXiv: 1907.02415. Google Scholar |
[10] |
C.-L. Chuang and T.-K. Lee,
Identities with a single skew derivation, J. Algebra, 288 (2005), 59-77.
doi: 10.1016/j.jalgebra.2003.12.032. |
[11] |
D. Cox, J. Little and D. O'Shea, Ideals, Varieties, and Algorithms. An Introduction to Computational Algebraic Geometry and Commutative Algebra, Third edition., Undergraduate Texts in Mathematics, Springer, New York, 2007.
doi: 10.1007/978-0-387-35651-8. |
[12] |
V. De Filippis and F. Wei,
$b$-generalized $(\alpha, \beta)$-derivations and $b$-generalized $(\alpha, \beta)$-biderivations of prime rings, Taiwanese J. Math., 22 (2018), 313-323.
doi: 10.11650/tjm/170903. |
[13] |
K. Erdmann and M. J. Wildon, Introduction to Lie Algebras, Springer Undergraduate Mathematics Series. Springer-Verlag London, Ltd., London, 2006.
doi: 10.1007/1-84628-490-2. |
[14] |
R. García-Delgado, G. Salgado and O. A. Sánchez-Valenzuela,
On 3-dimensional complex Hom-Lie algebras, J. Algebra, 555 (2020), 361-385.
doi: 10.1016/j.jalgebra.2020.03.005. |
[15] |
L. Guo, P. J. Cassidy, W. F. Keigher and W. Y. Sit, Differential Algebra and Related Topics, Proceedings of the International Workshop held at Rutgers University, Newark, NJ. World Scientific Publishing Co., Inc., River Edge, NJ, 2002.
doi: 10.1142/4768. |
[16] |
L. Guo and W. Keigher,
On differential Rota-Baxter algebras, J. Pure Appl. Algebra, 212 (2008), 522-540.
doi: 10.1016/j.jpaa.2007.06.008. |
[17] |
L. Guo and F. Li,
Structure of Hochschild cohomology of path algebras and differential formulation of Euler's polyhedron formula, Asian J. Math., 18 (2014), 545-572.
doi: 10.4310/AJM.2014.v18.n3.a9. |
[18] |
J. T. Hartwig, D. Larsson and S. D. Silvestrov,
Deformations of Lie algebras using $\sigma$-derivations, J. Algebra, 295 (2006), 314-361.
doi: 10.1016/j.jalgebra.2005.07.036. |
[19] |
B. Hvala,
Generalized derivations in rings, Comm. Algebra, 26 (1998), 1147-1166.
doi: 10.1080/00927879808826190. |
[20] |
N. Jacobson,
A note on automorphisms and derivations of Lie algebras, Proc. Amer. Math. Soc., 6 (1955), 281-283.
doi: 10.1090/S0002-9939-1955-0068532-9. |
[21] |
V. K. Kharchenko and A. Z. Popov,
Skew derivations of prime rings, Comm. Algebra, 20 (1992), 3321-3345.
doi: 10.1080/00927879208824517. |
[22] |
E. R. Kolchin, Differential algebra and algebraic groups, Pure and Applied Mathematics, Vol. 54. Academic Press, New York-London, 1973. |
[23] |
G. F. Leger and E. M. Luks,
Generalized derivations of Lie algebras, J. Algebra, 228 (2000), 165-203.
doi: 10.1006/jabr.1999.8250. |
[24] |
P. Novotný and J. Hrivnák,
On $(\alpha, \beta, \gamma)$-derivations of Lie algebras and corresponding invariant functions, J. Geom. Phys., 58 (2008), 208-217.
doi: 10.1016/j.geomphys.2007.10.005. |
[25] |
E. C. Posner,
Derivations in prime rings, Proc. Amer. Math. Soc., 8 (1957), 1093-1100.
doi: 10.1090/S0002-9939-1957-0095863-0. |
[26] |
J. F. Ritt, Differential Equations from the Algebraic Standpoint, American Mathematical Society Colloquium Publications, Vol. 14, American Mathematical Society, New York, 1932. |
[27] |
M. van der Put and M. F. Singer, Galois Theory of Linear Differential Equations, Grundlehren der Mathematischen Wissenschaften, Vol. 328, Springer-Verlag, Berlin, 2003.
doi: 10.1007/978-3-642-55750-7. |
[28] |
P. Zusmanovich,
On $\delta$-derivations of Lie algebras and superalgebras, J. Algebra, 324 (2010), 3470-3486.
doi: 10.1016/j.jalgebra.2010.09.032. |
[1] |
Naeem M. H. Alkoumi, Pedro J. Torres. Estimates on the number of limit cycles of a generalized Abel equation. Discrete & Continuous Dynamical Systems - A, 2011, 31 (1) : 25-34. doi: 10.3934/dcds.2011.31.25 |
[2] |
Mats Gyllenberg, Jifa Jiang, Lei Niu, Ping Yan. On the classification of generalized competitive Atkinson-Allen models via the dynamics on the boundary of the carrying simplex. Discrete & Continuous Dynamical Systems - A, 2018, 38 (2) : 615-650. doi: 10.3934/dcds.2018027 |
Impact Factor: 0.263
Tools
Metrics
Other articles
by authors
[Back to Top]