doi: 10.3934/era.2020127

A four-field mixed finite element method for Biot's consolidation problems

1. 

School of Mathematics and Statistics, Lanzhou University, Lanzhou 730000, China

2. 

Department of Mathematical Sciences, George Mason University, Fairfax, VA 22030, USA

3. 

Division of Mathematical Sciences, National Science Foundation, Alexandria, VA 22314, USA

* Corresponding author: Junping Wang

Received  August 2020 Published  December 2020

This article presents a four-field mixed finite element method for Biot's consolidation problems, where the four fields include the displacement, total stress, flux and pressure for the porous medium component of the modeling system. The mixed finite element method involving Raviart-Thomas element is used for the fluid flow equation, while the Crank-Nicolson scheme is employed for the time discretization. The main contribution of this work is the derivation of the optimal order error estimates for semi-discrete and fully-discrete schemes for the unknowns in energy norm or $ L^2 $ norm. Numerical experiments are presented to validate the theoretical results.

Citation: Wenya Qi, Padmanabhan Seshaiyer, Junping Wang. A four-field mixed finite element method for Biot's consolidation problems. Electronic Research Archive, doi: 10.3934/era.2020127
References:
[1] R. A. Adams and J. J. F. Fournier, Sobolev Spaces, 2 Edition, Academic Press, New York, 2003.   Google Scholar
[2]

I. Babuška, The finite element method with penalty, Math. Comp., 27 (1973), 221-228.  doi: 10.1090/S0025-5718-1973-0351118-5.  Google Scholar

[3]

L. Berger, R. Bordas, D. Kay and S. Tavener, Stabilized lowest-order finite element approximation for linear three-field poroelasticity, SIAM J. Sci. Comput., 37 (2015), A2222–A2245. doi: 10.1137/15M1009822.  Google Scholar

[4]

M. A. Biot, General theory of three-dimensional consolidation, J. Appl. Phys., 12 (1941), 155-164.  doi: 10.1063/1.1712886.  Google Scholar

[5]

M. A. Biot, Theory of elasticity and consolidation for a porous anisotropic solid, J. Appl. Phys., 26 (1955), 182-185.  doi: 10.1063/1.1721956.  Google Scholar

[6]

S. C. Brenner and L. R. Scott, The Mathematical Theory of Finite Element Methods, Third edition. Texts in Applied Mathematics, 15. Springer, New York, 2008. doi: 10.1007/978-0-387-75934-0.  Google Scholar

[7]

F. Brezzi, On the existence, uniqueness, and approximation of saddle point problems arising from Lagrange multipliers, RAIRO, 8 (1974), 129-151.   Google Scholar

[8]

F. Brezzi and M. Fortin, Mixed and Hybrid Finite Element Methods, Springer Series in Computational Mathematics, 15. Springer-Verlag, New York, 1991. doi: 10.1007/978-1-4612-3172-1.  Google Scholar

[9]

X. HuC. RodrigoF. J. Gaspar and L. T. Zikatanov, A nonconforming finite element method for the Biot's consolidation model in poroelasticity, J. Comput. Appl. Math., 310 (2017), 143-154.  doi: 10.1016/j.cam.2016.06.003.  Google Scholar

[10]

J. Korsawe and G. Starke, A least-squares mixed finite element method for Biot's consolidation problem in porous media, SIAM J. Numer. Anal., 43 (2005), 318-339.  doi: 10.1137/S0036142903432929.  Google Scholar

[11]

S. KumarR. Oyarz$\acute{u}$aR. Ruiz-Baier and R. Sandilya, Conservative discontinuous finite volume and mixed schemes for a new four-field formulation in poroelasticity, ESAIM Math. Model. Numer. Anal., 54 (2020), 273-299.  doi: 10.1051/m2an/2019063.  Google Scholar

[12]

J. J. Lee, Robust error analysis of coupled mixed methods for Biot's consolidation model, J. Sci. Comput., 69 (2016), 610-632.  doi: 10.1007/s10915-016-0210-0.  Google Scholar

[13]

J. J. Lee, K.-A. Mardal and R. Winther, Parameter-robust discretization and preconditioning of Biot's consolidation model, SIAM J. Sci. Comput., 39 (2017), A1–A24. doi: 10.1137/15M1029473.  Google Scholar

[14]

J. J. Lee, E. Piersanti, K.-A. Mardal and M. E. Rognes, A mixed finite element method for nearly incompressible multiple-network poroelasticity, SIAM J. Sci. Comput., 41 (2019), A722–A747. doi: 10.1137/18M1182395.  Google Scholar

[15]

R. LeidermanP. BarboneA. Oberai and J. Bamber, Coupling between elastic strain and interstitial fluid flow: ramifications for poroelastic imaging, Phys. Med. Biol., 51 (2006), 6291-6313.   Google Scholar

[16]

M. A. Murad and A. F. D. Loula, Improved accuracy in finite element analysis of Biot's consolidation problem, Comput. Methods Appl. Mech. Engrg., 95 (1992), 359-382.  doi: 10.1016/0045-7825(92)90193-N.  Google Scholar

[17]

M. A. Murad and A. F. D. Loula, On stability and convergence of finite element approximations of Biot's consolidation problem, Internat. J. Numer. Methods Engrg., 37 (1994), 645-667.  doi: 10.1002/nme.1620370407.  Google Scholar

[18]

M. A. MuradV. Thom$\acute{e}$e and A. F. D. Loula, Asymptotic behavior of semidiscrete finite-element approximations of Biot's consolidation problem, SIAM J. Numer. Anal., 33 (1996), 1065-1083.  doi: 10.1137/0733052.  Google Scholar

[19]

J.-C. Nédélec, Mixed finite elements in ${\bf R}^{3}$, Numer. Math., 35 (1980), 315-341.  doi: 10.1007/BF01396415.  Google Scholar

[20]

P. A. NettiL. T. BaxterY. BoucherR. Skalak and R. K. Jain, Macro-and microscopic fluid transport in living tissues: Application to solid tumors, AIChE Journal of Bioengineering Food, and Natural Products, 43 (1997), 818-834.  doi: 10.1002/aic.690430327.  Google Scholar

[21]

J. A. Nitsche, On Korn's second inequality, RAIRO Anal. Numér., 15 (1981), 237-248.  doi: 10.1051/m2an/1981150302371.  Google Scholar

[22]

R. Oyarz$\acute{u}$a and R. Ruiz-Baier, Locking-free finite element methods for poroelasticity, SIAM J. Numer. Anal., 54 (2016), 2951-2973.  doi: 10.1137/15M1050082.  Google Scholar

[23]

P. J. Phillips and M. F. Wheeler, A coupling of mixed and continuous Galerkin finite element methods for poroelasticity Ⅰ: The continuous in time case, Comput. Geosci., 11 (2007), 131-144.  doi: 10.1007/s10596-007-9045-y.  Google Scholar

[24]

P. J. Phillips and M. F. Wheeler, A coupling of mixed and continuous Galerkin finite element methods for poroelasticity Ⅱ: The discrete-in-time case, Comput. Geosci., 11 (2007), 145-158.  doi: 10.1007/s10596-007-9044-z.  Google Scholar

[25]

W. Qi, P. Seshaiyer and J. Wang, Finite element method with the total stress variable for Biot's consolidation model, 2020, https://arXiv.org/abs/2008.01278. Google Scholar

[26]

A. Quarteroni and A. Valli, Numerical Approximation of Partial Differential Equations, Springer Series in Computational Mathematics, 23. Springer-Verlag, Berlin, 1994.  Google Scholar

[27]

P.-A. Raviart and J. M. Thomas, A mixed finite element method for second order elliptic problems, Mathematical Aspects of the Finite Element Method (1. Galligani, E. Magenes, eds.), Lectures Notes in Math., Springer-Verlag, New York, 606 (1977), 292–315.  Google Scholar

[28]

S.-Y. Yi, Convergence analysis of a new mixed finite element method for Biot's consolidation model, Numer. Methods Partial Differential Equations, 30 (2014), 1189-1210.  doi: 10.1002/num.21865.  Google Scholar

show all references

References:
[1] R. A. Adams and J. J. F. Fournier, Sobolev Spaces, 2 Edition, Academic Press, New York, 2003.   Google Scholar
[2]

I. Babuška, The finite element method with penalty, Math. Comp., 27 (1973), 221-228.  doi: 10.1090/S0025-5718-1973-0351118-5.  Google Scholar

[3]

L. Berger, R. Bordas, D. Kay and S. Tavener, Stabilized lowest-order finite element approximation for linear three-field poroelasticity, SIAM J. Sci. Comput., 37 (2015), A2222–A2245. doi: 10.1137/15M1009822.  Google Scholar

[4]

M. A. Biot, General theory of three-dimensional consolidation, J. Appl. Phys., 12 (1941), 155-164.  doi: 10.1063/1.1712886.  Google Scholar

[5]

M. A. Biot, Theory of elasticity and consolidation for a porous anisotropic solid, J. Appl. Phys., 26 (1955), 182-185.  doi: 10.1063/1.1721956.  Google Scholar

[6]

S. C. Brenner and L. R. Scott, The Mathematical Theory of Finite Element Methods, Third edition. Texts in Applied Mathematics, 15. Springer, New York, 2008. doi: 10.1007/978-0-387-75934-0.  Google Scholar

[7]

F. Brezzi, On the existence, uniqueness, and approximation of saddle point problems arising from Lagrange multipliers, RAIRO, 8 (1974), 129-151.   Google Scholar

[8]

F. Brezzi and M. Fortin, Mixed and Hybrid Finite Element Methods, Springer Series in Computational Mathematics, 15. Springer-Verlag, New York, 1991. doi: 10.1007/978-1-4612-3172-1.  Google Scholar

[9]

X. HuC. RodrigoF. J. Gaspar and L. T. Zikatanov, A nonconforming finite element method for the Biot's consolidation model in poroelasticity, J. Comput. Appl. Math., 310 (2017), 143-154.  doi: 10.1016/j.cam.2016.06.003.  Google Scholar

[10]

J. Korsawe and G. Starke, A least-squares mixed finite element method for Biot's consolidation problem in porous media, SIAM J. Numer. Anal., 43 (2005), 318-339.  doi: 10.1137/S0036142903432929.  Google Scholar

[11]

S. KumarR. Oyarz$\acute{u}$aR. Ruiz-Baier and R. Sandilya, Conservative discontinuous finite volume and mixed schemes for a new four-field formulation in poroelasticity, ESAIM Math. Model. Numer. Anal., 54 (2020), 273-299.  doi: 10.1051/m2an/2019063.  Google Scholar

[12]

J. J. Lee, Robust error analysis of coupled mixed methods for Biot's consolidation model, J. Sci. Comput., 69 (2016), 610-632.  doi: 10.1007/s10915-016-0210-0.  Google Scholar

[13]

J. J. Lee, K.-A. Mardal and R. Winther, Parameter-robust discretization and preconditioning of Biot's consolidation model, SIAM J. Sci. Comput., 39 (2017), A1–A24. doi: 10.1137/15M1029473.  Google Scholar

[14]

J. J. Lee, E. Piersanti, K.-A. Mardal and M. E. Rognes, A mixed finite element method for nearly incompressible multiple-network poroelasticity, SIAM J. Sci. Comput., 41 (2019), A722–A747. doi: 10.1137/18M1182395.  Google Scholar

[15]

R. LeidermanP. BarboneA. Oberai and J. Bamber, Coupling between elastic strain and interstitial fluid flow: ramifications for poroelastic imaging, Phys. Med. Biol., 51 (2006), 6291-6313.   Google Scholar

[16]

M. A. Murad and A. F. D. Loula, Improved accuracy in finite element analysis of Biot's consolidation problem, Comput. Methods Appl. Mech. Engrg., 95 (1992), 359-382.  doi: 10.1016/0045-7825(92)90193-N.  Google Scholar

[17]

M. A. Murad and A. F. D. Loula, On stability and convergence of finite element approximations of Biot's consolidation problem, Internat. J. Numer. Methods Engrg., 37 (1994), 645-667.  doi: 10.1002/nme.1620370407.  Google Scholar

[18]

M. A. MuradV. Thom$\acute{e}$e and A. F. D. Loula, Asymptotic behavior of semidiscrete finite-element approximations of Biot's consolidation problem, SIAM J. Numer. Anal., 33 (1996), 1065-1083.  doi: 10.1137/0733052.  Google Scholar

[19]

J.-C. Nédélec, Mixed finite elements in ${\bf R}^{3}$, Numer. Math., 35 (1980), 315-341.  doi: 10.1007/BF01396415.  Google Scholar

[20]

P. A. NettiL. T. BaxterY. BoucherR. Skalak and R. K. Jain, Macro-and microscopic fluid transport in living tissues: Application to solid tumors, AIChE Journal of Bioengineering Food, and Natural Products, 43 (1997), 818-834.  doi: 10.1002/aic.690430327.  Google Scholar

[21]

J. A. Nitsche, On Korn's second inequality, RAIRO Anal. Numér., 15 (1981), 237-248.  doi: 10.1051/m2an/1981150302371.  Google Scholar

[22]

R. Oyarz$\acute{u}$a and R. Ruiz-Baier, Locking-free finite element methods for poroelasticity, SIAM J. Numer. Anal., 54 (2016), 2951-2973.  doi: 10.1137/15M1050082.  Google Scholar

[23]

P. J. Phillips and M. F. Wheeler, A coupling of mixed and continuous Galerkin finite element methods for poroelasticity Ⅰ: The continuous in time case, Comput. Geosci., 11 (2007), 131-144.  doi: 10.1007/s10596-007-9045-y.  Google Scholar

[24]

P. J. Phillips and M. F. Wheeler, A coupling of mixed and continuous Galerkin finite element methods for poroelasticity Ⅱ: The discrete-in-time case, Comput. Geosci., 11 (2007), 145-158.  doi: 10.1007/s10596-007-9044-z.  Google Scholar

[25]

W. Qi, P. Seshaiyer and J. Wang, Finite element method with the total stress variable for Biot's consolidation model, 2020, https://arXiv.org/abs/2008.01278. Google Scholar

[26]

A. Quarteroni and A. Valli, Numerical Approximation of Partial Differential Equations, Springer Series in Computational Mathematics, 23. Springer-Verlag, Berlin, 1994.  Google Scholar

[27]

P.-A. Raviart and J. M. Thomas, A mixed finite element method for second order elliptic problems, Mathematical Aspects of the Finite Element Method (1. Galligani, E. Magenes, eds.), Lectures Notes in Math., Springer-Verlag, New York, 606 (1977), 292–315.  Google Scholar

[28]

S.-Y. Yi, Convergence analysis of a new mixed finite element method for Biot's consolidation model, Numer. Methods Partial Differential Equations, 30 (2014), 1189-1210.  doi: 10.1002/num.21865.  Google Scholar

Table 1.  Convergence at $ t^n = 1 $ when $ \tau = h $ for $ ([P_2]^2,P_0,P_0, RT_0) $: Example 1 with homogeneous Dirichlet boundary condition
h $ |||e_{\bf{u}}^n||| $ $ ||e_{\bf{u}}^n|| $ $ ||e_z^n|| $ $ ||e_p^n|| $ $ ||e_{{\bf{q}}}^n|| $
error order error order error order error order error order
1/8 1.0970e+00 3.6212e-02 9.8472e-04 1.0326e-03 2.6009e-04
1/16 5.5495e-01 0.98 9.1920e-03 1.98 2.9921e-04 1.72 3.4406e-04 1.59 1.1141e-04 1.22
1/32 2.7839e-01 1.00 2.3020e-03 2.00 1.0632e-04 1.49 1.1722e-04 1.55 3.6399e-05 1.61
1/64 1.3934e-01 1.00 5.7569e-04 2.00 2.8200e-05 1.92 3.0540e-05 1.94 8.6783e-06 2.02
h $ |||e_{\bf{u}}^n||| $ $ ||e_{\bf{u}}^n|| $ $ ||e_z^n|| $ $ ||e_p^n|| $ $ ||e_{{\bf{q}}}^n|| $
error order error order error order error order error order
1/8 1.0970e+00 3.6212e-02 9.8472e-04 1.0326e-03 2.6009e-04
1/16 5.5495e-01 0.98 9.1920e-03 1.98 2.9921e-04 1.72 3.4406e-04 1.59 1.1141e-04 1.22
1/32 2.7839e-01 1.00 2.3020e-03 2.00 1.0632e-04 1.49 1.1722e-04 1.55 3.6399e-05 1.61
1/64 1.3934e-01 1.00 5.7569e-04 2.00 2.8200e-05 1.92 3.0540e-05 1.94 8.6783e-06 2.02
Table 2.  Convergence at $ t^n = 1 $ when $ h = 1/512 $ for $ ([P_2]^2,P_0,P_0, RT_0) $: Example 1 with homogeneous Dirichlet boundary condition
$ \tau $ $ |||e_{\bf{u}}^n||| $ $ ||e_{\bf{u}}^n|| $ $ ||e_z^n|| $ $ || e_p^n|| $ $ ||e_{{\bf{q}}}^n|| $
error order error order error order error order
1 1.9294e+00 3.1761e-01 5.6108e-02 6.9489e-02 1.4643e-02
1/2 4.7787e-01 2.01 7.8199e-02 2.02 1.3792e-02 2.02 1.7129e-02 2.02 3.3258e-03 2.14
1/4 1.2053e-01 1.99 1.9539e-02 2.00 3.4454e-03 2.00 4.2784e-03 2.00 8.3143e-04 2.00
1/8 3.4530e-02 1.80 4.8821e-03 2.00 8.6090e-04 2.00 1.0691e-03 2.00 2.0775e-04 2.00
$ \tau $ $ |||e_{\bf{u}}^n||| $ $ ||e_{\bf{u}}^n|| $ $ ||e_z^n|| $ $ || e_p^n|| $ $ ||e_{{\bf{q}}}^n|| $
error order error order error order error order
1 1.9294e+00 3.1761e-01 5.6108e-02 6.9489e-02 1.4643e-02
1/2 4.7787e-01 2.01 7.8199e-02 2.02 1.3792e-02 2.02 1.7129e-02 2.02 3.3258e-03 2.14
1/4 1.2053e-01 1.99 1.9539e-02 2.00 3.4454e-03 2.00 4.2784e-03 2.00 8.3143e-04 2.00
1/8 3.4530e-02 1.80 4.8821e-03 2.00 8.6090e-04 2.00 1.0691e-03 2.00 2.0775e-04 2.00
Table 3.  Convergence at $ t^n = 1 $ when $ \tau = h $ for $ ([P_2]^2,P_0,P_0, RT_0) $: Example 2 with non-homogeneous Dirichlet boundary data
h $ |||e_{\bf{u}}^n||| $ $ ||e_{\bf{u}}^n|| $ $ ||e_z^n|| $ $ ||e_p^n|| $ $ ||e_{{\bf{q}}}^n|| $
error order error order error order error order error order
1/8 1.6784e-02 5.6421e-04 1.9561e-02 1.2901e-03 6.7991e-03
1/16 8.6688e-03 0.95 1.4538e-04 1.96 5.3817e-03 1.86 4.4940e-04 1.52 2.3988e-03 1.50
1/32 4.3990e-03 0.98 3.6669e-05 1.99 1.4495e-03 1.89 9.9263e-05 2.18 7.0921e-04 1.76
1/64 2.2148e-03 0.99 9.1937e-06 2.00 3.9949e-04 1.86 2.2901e-05 2.12 2.2685e-04 1.64
h $ |||e_{\bf{u}}^n||| $ $ ||e_{\bf{u}}^n|| $ $ ||e_z^n|| $ $ ||e_p^n|| $ $ ||e_{{\bf{q}}}^n|| $
error order error order error order error order error order
1/8 1.6784e-02 5.6421e-04 1.9561e-02 1.2901e-03 6.7991e-03
1/16 8.6688e-03 0.95 1.4538e-04 1.96 5.3817e-03 1.86 4.4940e-04 1.52 2.3988e-03 1.50
1/32 4.3990e-03 0.98 3.6669e-05 1.99 1.4495e-03 1.89 9.9263e-05 2.18 7.0921e-04 1.76
1/64 2.2148e-03 0.99 9.1937e-06 2.00 3.9949e-04 1.86 2.2901e-05 2.12 2.2685e-04 1.64
Table 4.  Convergence at $ t^n = 1 $ when $ \tau = h $ for $ ([P_2]^2,P_0,P_0, RT_0) $: Example 2 with mixed Dirichlet and Neumann boundary conditions
h $ |||e_{\bf{u}}^n||| $ $ ||e_{\bf{u}}^n|| $ $ ||e_z^n|| $ $ ||e_p^n|| $ $ ||e_{{\bf{q}}}^n|| $
error order error order error order error order error order
1/8 1.6863e-02 5.3041e-04 2.0902e-02 1.1893e-03 6.4497e-03
1/16 8.6834e-03 0.96 1.3557e-04 1.97 5.5918e-03 1.90 2.8353e-04 2.07 1.9159e-03 1.75
1/32 4.4019e-03 0.98 3.4070e-05 1.99 1.4745e-03 1.92 3.4283e-05 3.05 4.1519e-04 2.21
1/64 2.2155e-03 0.99 8.5408e-06 2.00 4.0097e-04 1.88 5.5825e-06 2.62 9.2273e-05 2.17
h $ |||e_{\bf{u}}^n||| $ $ ||e_{\bf{u}}^n|| $ $ ||e_z^n|| $ $ ||e_p^n|| $ $ ||e_{{\bf{q}}}^n|| $
error order error order error order error order error order
1/8 1.6863e-02 5.3041e-04 2.0902e-02 1.1893e-03 6.4497e-03
1/16 8.6834e-03 0.96 1.3557e-04 1.97 5.5918e-03 1.90 2.8353e-04 2.07 1.9159e-03 1.75
1/32 4.4019e-03 0.98 3.4070e-05 1.99 1.4745e-03 1.92 3.4283e-05 3.05 4.1519e-04 2.21
1/64 2.2155e-03 0.99 8.5408e-06 2.00 4.0097e-04 1.88 5.5825e-06 2.62 9.2273e-05 2.17
Table 5.  Convergence at $ t^n = 1 $ when $ \tau = h $ for $ ([P_2]^2,P_1,P_0, RT_0) $: Example 2 with non-homogeneous Dirichlet boundary data
h $ |||e_{\bf{u}}^n||| $ $ ||e_{\bf{u}}^n|| $ $ ||e_z^n|| $ $ ||e_p^n|| $ $ ||e_{{\bf{q}}}^n|| $
error order error order error order error order error order
1/8 3.1646e-04 1.3523e-05 5.1888e-02 3.2782e-03 1.6614e-02
1/16 5.1165e-05 2.63 4.1755e-06 1.70 1.3362e-02 1.96 1.1749e-03 1.48 6.1427e-03 1.44
1/32 1.0911e-05 2.23 7.0520e-07 2.57 3.3167e-03 2.01 2.5536e-04 2.20 1.8480e-03 1.73
1/64 3.3563e-06 1.70 1.2494e-07 2.50 8.2329e-04 2.01 5.7363e-05 2.15 6.1243e-04 1.59
h $ |||e_{\bf{u}}^n||| $ $ ||e_{\bf{u}}^n|| $ $ ||e_z^n|| $ $ ||e_p^n|| $ $ ||e_{{\bf{q}}}^n|| $
error order error order error order error order error order
1/8 3.1646e-04 1.3523e-05 5.1888e-02 3.2782e-03 1.6614e-02
1/16 5.1165e-05 2.63 4.1755e-06 1.70 1.3362e-02 1.96 1.1749e-03 1.48 6.1427e-03 1.44
1/32 1.0911e-05 2.23 7.0520e-07 2.57 3.3167e-03 2.01 2.5536e-04 2.20 1.8480e-03 1.73
1/64 3.3563e-06 1.70 1.2494e-07 2.50 8.2329e-04 2.01 5.7363e-05 2.15 6.1243e-04 1.59
Table 6.  Convergence at $ t^n = 1 $ when $ \tau = h $ for $ ([P_2]^2,P_1,P_0, RT_0) $: Example 2 with mixed Dirichlet and Neumann boundary data
h $ |||e_{\bf{u}}^n||| $ $ ||e_{\bf{u}}^n|| $ $ ||e_z^n|| $ $ ||e_p^n|| $ $ ||e_{{\bf{q}}}^n|| $
error order error order error order error order error order
1/8 5.4994e-04 2.8159e-05 5.1568e-02 3.1130e-03 1.4807e-02
1/16 9.7846e-05 2.49 6.4894e-06 2.12 1.3027e-02 1.98 7.7273e-04 2.01 4.4788e-03 1.73
1/32 1.8542e-05 2.40 8.1614e-07 2.99 3.1901e-03. 2.03 9.6270e-05 3.00 8.9236e-04 2.33
1/64 4.2955e-06 2.11 1.0693e-07 2.93 7.8825e-04. 2.02 1.1182e-05 3.11 1.7505e-04 2.35
h $ |||e_{\bf{u}}^n||| $ $ ||e_{\bf{u}}^n|| $ $ ||e_z^n|| $ $ ||e_p^n|| $ $ ||e_{{\bf{q}}}^n|| $
error order error order error order error order error order
1/8 5.4994e-04 2.8159e-05 5.1568e-02 3.1130e-03 1.4807e-02
1/16 9.7846e-05 2.49 6.4894e-06 2.12 1.3027e-02 1.98 7.7273e-04 2.01 4.4788e-03 1.73
1/32 1.8542e-05 2.40 8.1614e-07 2.99 3.1901e-03. 2.03 9.6270e-05 3.00 8.9236e-04 2.33
1/64 4.2955e-06 2.11 1.0693e-07 2.93 7.8825e-04. 2.02 1.1182e-05 3.11 1.7505e-04 2.35
[1]

Marita Holtmannspötter, Arnd Rösch, Boris Vexler. A priori error estimates for the space-time finite element discretization of an optimal control problem governed by a coupled linear PDE-ODE system. Mathematical Control & Related Fields, 2021  doi: 10.3934/mcrf.2021014

[2]

Lunji Song, Wenya Qi, Kaifang Liu, Qingxian Gu. A new over-penalized weak galerkin finite element method. Part Ⅱ: Elliptic interface problems. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2581-2598. doi: 10.3934/dcdsb.2020196

[3]

Jiangxing Wang. Convergence analysis of an accurate and efficient method for nonlinear Maxwell's equations. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2429-2440. doi: 10.3934/dcdsb.2020185

[4]

Marion Darbas, Jérémy Heleine, Stephanie Lohrengel. Numerical resolution by the quasi-reversibility method of a data completion problem for Maxwell's equations. Inverse Problems & Imaging, 2020, 14 (6) : 1107-1133. doi: 10.3934/ipi.2020056

[5]

Carlos Fresneda-Portillo, Sergey E. Mikhailov. Analysis of Boundary-Domain Integral Equations to the mixed BVP for a compressible stokes system with variable viscosity. Communications on Pure & Applied Analysis, 2019, 18 (6) : 3059-3088. doi: 10.3934/cpaa.2019137

[6]

Hakan Özadam, Ferruh Özbudak. A note on negacyclic and cyclic codes of length $p^s$ over a finite field of characteristic $p$. Advances in Mathematics of Communications, 2009, 3 (3) : 265-271. doi: 10.3934/amc.2009.3.265

[7]

Qiang Guo, Dong Liang. An adaptive wavelet method and its analysis for parabolic equations. Numerical Algebra, Control & Optimization, 2013, 3 (2) : 327-345. doi: 10.3934/naco.2013.3.327

[8]

Bernold Fiedler, Carlos Rocha, Matthias Wolfrum. Sturm global attractors for $S^1$-equivariant parabolic equations. Networks & Heterogeneous Media, 2012, 7 (4) : 617-659. doi: 10.3934/nhm.2012.7.617

[9]

Zengyun Wang, Jinde Cao, Zuowei Cai, Lihong Huang. Finite-time stability of impulsive differential inclusion: Applications to discontinuous impulsive neural networks. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2677-2692. doi: 10.3934/dcdsb.2020200

[10]

Jianping Gao, Shangjiang Guo, Wenxian Shen. Persistence and time periodic positive solutions of doubly nonlocal Fisher-KPP equations in time periodic and space heterogeneous media. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2645-2676. doi: 10.3934/dcdsb.2020199

[11]

Boris Kramer, John R. Singler. A POD projection method for large-scale algebraic Riccati equations. Numerical Algebra, Control & Optimization, 2016, 6 (4) : 413-435. doi: 10.3934/naco.2016018

[12]

Xiaomao Deng, Xiao-Chuan Cai, Jun Zou. A parallel space-time domain decomposition method for unsteady source inversion problems. Inverse Problems & Imaging, 2015, 9 (4) : 1069-1091. doi: 10.3934/ipi.2015.9.1069

[13]

Demetres D. Kouvatsos, Jumma S. Alanazi, Kevin Smith. A unified ME algorithm for arbitrary open QNMs with mixed blocking mechanisms. Numerical Algebra, Control & Optimization, 2011, 1 (4) : 781-816. doi: 10.3934/naco.2011.1.781

[14]

Arseny Egorov. Morse coding for a Fuchsian group of finite covolume. Journal of Modern Dynamics, 2009, 3 (4) : 637-646. doi: 10.3934/jmd.2009.3.637

[15]

Z. Reichstein and B. Youssin. Parusinski's "Key Lemma" via algebraic geometry. Electronic Research Announcements, 1999, 5: 136-145.

[16]

Armin Lechleiter, Tobias Rienmüller. Factorization method for the inverse Stokes problem. Inverse Problems & Imaging, 2013, 7 (4) : 1271-1293. doi: 10.3934/ipi.2013.7.1271

[17]

Murat Uzunca, Ayşe Sarıaydın-Filibelioǧlu. Adaptive discontinuous galerkin finite elements for advective Allen-Cahn equation. Numerical Algebra, Control & Optimization, 2021, 11 (2) : 269-281. doi: 10.3934/naco.2020025

[18]

Ronald E. Mickens. Positivity preserving discrete model for the coupled ODE's modeling glycolysis. Conference Publications, 2003, 2003 (Special) : 623-629. doi: 10.3934/proc.2003.2003.623

[19]

Enkhbat Rentsen, Battur Gompil. Generalized Nash equilibrium problem based on malfatti's problem. Numerical Algebra, Control & Optimization, 2021, 11 (2) : 209-220. doi: 10.3934/naco.2020022

[20]

Huy Dinh, Harbir Antil, Yanlai Chen, Elena Cherkaev, Akil Narayan. Model reduction for fractional elliptic problems using Kato's formula. Mathematical Control & Related Fields, 2021  doi: 10.3934/mcrf.2021004

 Impact Factor: 0.263

Metrics

  • PDF downloads (47)
  • HTML views (97)
  • Cited by (0)

Other articles
by authors

[Back to Top]