
-
Previous Article
Classification of finite irreducible conformal modules over Lie conformal algebra $ \mathcal{W}(a, b, r) $
- ERA Home
- This Issue
-
Next Article
On $ n $-slice algebras and related algebras
Tori can't collapse to an interval
018 McAllister Bldg, University Park, PA 16802-6402, USA |
Here we prove that under a lower sectional curvature bound, a sequence of Riemannian manifolds diffeomorphic to the standard $ m $-dimensional torus cannot converge in the Gromov–Hausdorff sense to a closed interval.
The proof is done by contradiction by analyzing suitable covers of a contradicting sequence, obtained from the Burago–Gromov–Perelman generalization of the Yamaguchi fibration theorem.
References:
[1] |
L. Auslander and M. Kuranishi,
On the holonomy group of locally Euclidean spaces, Ann. of Math., 65 (1957), 411-415.
doi: 10.2307/1970053. |
[2] |
R. L. Bishop and R. J. Crittenden, Geometry of manifolds, Academic Press, 1964.
![]() |
[3] |
D. Burago, Y. Burago and S. Ivanov, A Course in Metric Geometry, Graduate Studies in Mathematics, 33. American Mathematical Society, Providence, RI, 2001.
doi: 10.1090/gsm/033. |
[4] |
Y. Burago, M. Gromov and G. A. D. Perel'man,
Alexandrov spaces with curvature bounded below, Russian Mathematical Surveys, 47 (1992), 1-58.
doi: 10.1070/RM1992v047n02ABEH000877. |
[5] |
J. W. S. Cassels, An Introduction to The Geometry Of Numbers, Springer Science & Business Media (2012). Google Scholar |
[6] |
L. S. Charlap, Bieberbach Groups and Flat Manifolds, Springer-Verlag, New York, 1986.
doi: 10.1007/978-1-4613-8687-2. |
[7] |
M. Gromov,
Filling Riemannian manifolds, J. Differential Geom., 18 (1983), 1-147.
doi: 10.4310/jdg/1214509283. |
[8] |
M. Gromov,
Groups of polynomial growth and expanding maps, Inst. Hautes Études Sci. Publ. Math., 53 (1981), 53-73.
doi: 10.1007/BF02698687. |
[9] |
M. Gromov, Metric Structures for Riemannian and Non-Riemannian Spaces, Birkhäuser Boston, Inc., Boston, MA, 2007. |
[10] |
M. Gromov and H. B. Lawson Jr,
Spin and scalar curvature in the presence of a fundamental group Ⅰ, Ann. of Math., 111 (1980), 209-230.
doi: 10.2307/1971198. |
[11] |
V. Kapovitch, Perelman's stability theorem, Surveys in Differential Geometry, 11 (2006), 103–136. arXiv: math/0703002.
doi: 10.4310/SDG.2006.v11.n1.a5. |
[12] |
V. Kapovitch,
Restrictions on collapsing with a lower sectional curvature bound, Math. Z., 249 (2005), 519-539.
doi: 10.1007/s00209-004-0715-3. |
[13] |
V. Kapovitch, A. Petrunin and W. Tuschmann,
Almost nonnegative curvature, and the gradient flow on Alexandrov spaces, Ann. of Math., 171 (2010), 343-373.
doi: 10.4007/annals.2010.171.343. |
[14] |
M. G. Katz, Torus cannot collapse to a segment, J. Geom., 111 (2020), Paper No. 13, 8 pp.
doi: 10.1007/s00022-020-0525-8. |
[15] |
G. Ya. Perelman, Alexandrov spaces with curvature bounded from below Ⅱ, Leningrad Branch of Steklov Institute. St. Petesburg (1991) Google Scholar |
[16] |
T. Yamaguchi,
Collapsing and pinching under a lower curvature bound, Ann. of Math., 133 (1991), 317-357.
doi: 10.2307/2944340. |
show all references
References:
[1] |
L. Auslander and M. Kuranishi,
On the holonomy group of locally Euclidean spaces, Ann. of Math., 65 (1957), 411-415.
doi: 10.2307/1970053. |
[2] |
R. L. Bishop and R. J. Crittenden, Geometry of manifolds, Academic Press, 1964.
![]() |
[3] |
D. Burago, Y. Burago and S. Ivanov, A Course in Metric Geometry, Graduate Studies in Mathematics, 33. American Mathematical Society, Providence, RI, 2001.
doi: 10.1090/gsm/033. |
[4] |
Y. Burago, M. Gromov and G. A. D. Perel'man,
Alexandrov spaces with curvature bounded below, Russian Mathematical Surveys, 47 (1992), 1-58.
doi: 10.1070/RM1992v047n02ABEH000877. |
[5] |
J. W. S. Cassels, An Introduction to The Geometry Of Numbers, Springer Science & Business Media (2012). Google Scholar |
[6] |
L. S. Charlap, Bieberbach Groups and Flat Manifolds, Springer-Verlag, New York, 1986.
doi: 10.1007/978-1-4613-8687-2. |
[7] |
M. Gromov,
Filling Riemannian manifolds, J. Differential Geom., 18 (1983), 1-147.
doi: 10.4310/jdg/1214509283. |
[8] |
M. Gromov,
Groups of polynomial growth and expanding maps, Inst. Hautes Études Sci. Publ. Math., 53 (1981), 53-73.
doi: 10.1007/BF02698687. |
[9] |
M. Gromov, Metric Structures for Riemannian and Non-Riemannian Spaces, Birkhäuser Boston, Inc., Boston, MA, 2007. |
[10] |
M. Gromov and H. B. Lawson Jr,
Spin and scalar curvature in the presence of a fundamental group Ⅰ, Ann. of Math., 111 (1980), 209-230.
doi: 10.2307/1971198. |
[11] |
V. Kapovitch, Perelman's stability theorem, Surveys in Differential Geometry, 11 (2006), 103–136. arXiv: math/0703002.
doi: 10.4310/SDG.2006.v11.n1.a5. |
[12] |
V. Kapovitch,
Restrictions on collapsing with a lower sectional curvature bound, Math. Z., 249 (2005), 519-539.
doi: 10.1007/s00209-004-0715-3. |
[13] |
V. Kapovitch, A. Petrunin and W. Tuschmann,
Almost nonnegative curvature, and the gradient flow on Alexandrov spaces, Ann. of Math., 171 (2010), 343-373.
doi: 10.4007/annals.2010.171.343. |
[14] |
M. G. Katz, Torus cannot collapse to a segment, J. Geom., 111 (2020), Paper No. 13, 8 pp.
doi: 10.1007/s00022-020-0525-8. |
[15] |
G. Ya. Perelman, Alexandrov spaces with curvature bounded from below Ⅱ, Leningrad Branch of Steklov Institute. St. Petesburg (1991) Google Scholar |
[16] |
T. Yamaguchi,
Collapsing and pinching under a lower curvature bound, Ann. of Math., 133 (1991), 317-357.
doi: 10.2307/2944340. |



[1] |
Guido De Philippis, Antonio De Rosa, Jonas Hirsch. The area blow up set for bounded mean curvature submanifolds with respect to elliptic surface energy functionals. Discrete & Continuous Dynamical Systems - A, 2019, 39 (12) : 7031-7056. doi: 10.3934/dcds.2019243 |
[2] |
Z. Reichstein and B. Youssin. Parusinski's "Key Lemma" via algebraic geometry. Electronic Research Announcements, 1999, 5: 136-145. |
[3] |
Juan Manuel Pastor, Javier García-Algarra, Javier Galeano, José María Iriondo, José J. Ramasco. A simple and bounded model of population dynamics for mutualistic networks. Networks & Heterogeneous Media, 2015, 10 (1) : 53-70. doi: 10.3934/nhm.2015.10.53 |
[4] |
Feng Luo. A combinatorial curvature flow for compact 3-manifolds with boundary. Electronic Research Announcements, 2005, 11: 12-20. |
[5] |
Livia Betz, Irwin Yousept. Optimal control of elliptic variational inequalities with bounded and unbounded operators. Mathematical Control & Related Fields, 2021 doi: 10.3934/mcrf.2021009 |
[6] |
Ka Luen Cheung, Man Chun Leung. Asymptotic behavior of positive solutions of the equation $ \Delta u + K u^{\frac{n+2}{n-2}} = 0$ in $IR^n$ and positive scalar curvature. Conference Publications, 2001, 2001 (Special) : 109-120. doi: 10.3934/proc.2001.2001.109 |
[7] |
Luigi C. Berselli, Jishan Fan. Logarithmic and improved regularity criteria for the 3D nematic liquid crystals models, Boussinesq system, and MHD equations in a bounded domain. Communications on Pure & Applied Analysis, 2015, 14 (2) : 637-655. doi: 10.3934/cpaa.2015.14.637 |
Impact Factor: 0.263
Tools
Metrics
Other articles
by authors
[Back to Top]