doi: 10.3934/era.2021007

Telescoping method, summation formulas, and inversion pairs

School of Mathematics, Tianjin University, Tianjin 300350, China

* Corresponding author

Received  May 2020 Revised  November 2020 Published  January 2021

Based on Gosper's algorithm, we present an approach to the telescoping of general sequences. Along this approach, we propose a summation formula and a bibasic extension of Ma's inversion formula. From the formulas, we are able to derive several hypergeometric and elliptic hypergeometric identities.

Citation: Qing-Hu Hou, Yarong Wei. Telescoping method, summation formulas, and inversion pairs. Electronic Research Archive, doi: 10.3934/era.2021007
References:
[1]

A. Bauer and M. Petkovšek, Multibasic and mixed hypergeometric Gosper-type algorithms, J. Symbolic Comput., 28 (1999), 711-736.  doi: 10.1006/jsco.1999.0321.  Google Scholar

[2]

G. Bhatnagar and S. C. Milne, Generalized bibasic hypergeometric series and their $$ \rm U $(n)$ extensions, Adv. Math., 131 (1997), 188-252.  doi: 10.1006/aima.1997.1659.  Google Scholar

[3]

D. M. Bressoud, A matrix inverse, Proc. Amer. Math. Soc., 88 (1983), 446-448.  doi: 10.1090/S0002-9939-1983-0699411-9.  Google Scholar

[4]

F. Chyzak, An extension of Zeilberger's fast algorithm to general holonomic functions, Discrete Math., 217 (2000), 115-134.  doi: 10.1016/S0012-365X(99)00259-9.  Google Scholar

[5]

G. Gasper, Summation, transformation, and expansion formulas for bibasic series, Trans. Amer. Math. Soc., 312 (1989), 257-277.  doi: 10.1090/S0002-9947-1989-0953537-0.  Google Scholar

[6]

G. Gasper and M. Rahman, Basic Hypergeometric Series, Second Ed., Cambridge University Press, Cambridge, 2004. doi: 10.1017/CBO9780511526251.  Google Scholar

[7]

R. W. Gosper Jr., Decision procedure for indefinite hypergeometric summation, Proc. Natl. Acad. Sci. USA, 75 (1978), 40-42.  doi: 10.1073/pnas.75.1.40.  Google Scholar

[8]

M. Karr, Summation in finite terms, J. Assoc. Comput. Mach., 28 (1981), 305-350.  doi: 10.1145/322248.322255.  Google Scholar

[9]

C. Krattenthaler, A new matrix inverse, Proc. Amer. Math. Soc., 124 (1996), 47-59.  doi: 10.1090/S0002-9939-96-03042-0.  Google Scholar

[10]

X. Ma, The $(f, g)$-inversion formula and its applications: The $(f, g)$-summation formula, Adv. in Appl. Math., 38 (2007), 227-257.  doi: 10.1016/j.aam.2005.06.006.  Google Scholar

[11]

P. Paule and C. Schneider, Towards a symbolic summation theory for unspecified sequences, In: Elliptic Integrals, Elliptic Functions and Modular Forms in Quantum Field Theory, 351–390, Texts Monogr. Symbol. Comput., Springer, Cham, 2019.  Google Scholar

[12]

M. Petkovšek, H. S. Wilf and D. Zeilberger, $A = B$, A K Peters, Ltd., Wellesley, MA, 1996.  Google Scholar

[13]

C. Schneider, Symbolic Summation in Difference Fields, Ph. D. thesis, J. Kepler University, 2001. Google Scholar

[14]

S. O. Warnaar, Summation and transformation formulas for elliptic hypergeometric series, Constr. Approx., 18 (2002), 479-502.  doi: 10.1007/s00365-002-0501-6.  Google Scholar

[15]

D. Zeilberger, The method of creative telescoping, J. Symbolic Comput., 11 (1991), 195-204.  doi: 10.1016/S0747-7171(08)80044-2.  Google Scholar

show all references

References:
[1]

A. Bauer and M. Petkovšek, Multibasic and mixed hypergeometric Gosper-type algorithms, J. Symbolic Comput., 28 (1999), 711-736.  doi: 10.1006/jsco.1999.0321.  Google Scholar

[2]

G. Bhatnagar and S. C. Milne, Generalized bibasic hypergeometric series and their $$ \rm U $(n)$ extensions, Adv. Math., 131 (1997), 188-252.  doi: 10.1006/aima.1997.1659.  Google Scholar

[3]

D. M. Bressoud, A matrix inverse, Proc. Amer. Math. Soc., 88 (1983), 446-448.  doi: 10.1090/S0002-9939-1983-0699411-9.  Google Scholar

[4]

F. Chyzak, An extension of Zeilberger's fast algorithm to general holonomic functions, Discrete Math., 217 (2000), 115-134.  doi: 10.1016/S0012-365X(99)00259-9.  Google Scholar

[5]

G. Gasper, Summation, transformation, and expansion formulas for bibasic series, Trans. Amer. Math. Soc., 312 (1989), 257-277.  doi: 10.1090/S0002-9947-1989-0953537-0.  Google Scholar

[6]

G. Gasper and M. Rahman, Basic Hypergeometric Series, Second Ed., Cambridge University Press, Cambridge, 2004. doi: 10.1017/CBO9780511526251.  Google Scholar

[7]

R. W. Gosper Jr., Decision procedure for indefinite hypergeometric summation, Proc. Natl. Acad. Sci. USA, 75 (1978), 40-42.  doi: 10.1073/pnas.75.1.40.  Google Scholar

[8]

M. Karr, Summation in finite terms, J. Assoc. Comput. Mach., 28 (1981), 305-350.  doi: 10.1145/322248.322255.  Google Scholar

[9]

C. Krattenthaler, A new matrix inverse, Proc. Amer. Math. Soc., 124 (1996), 47-59.  doi: 10.1090/S0002-9939-96-03042-0.  Google Scholar

[10]

X. Ma, The $(f, g)$-inversion formula and its applications: The $(f, g)$-summation formula, Adv. in Appl. Math., 38 (2007), 227-257.  doi: 10.1016/j.aam.2005.06.006.  Google Scholar

[11]

P. Paule and C. Schneider, Towards a symbolic summation theory for unspecified sequences, In: Elliptic Integrals, Elliptic Functions and Modular Forms in Quantum Field Theory, 351–390, Texts Monogr. Symbol. Comput., Springer, Cham, 2019.  Google Scholar

[12]

M. Petkovšek, H. S. Wilf and D. Zeilberger, $A = B$, A K Peters, Ltd., Wellesley, MA, 1996.  Google Scholar

[13]

C. Schneider, Symbolic Summation in Difference Fields, Ph. D. thesis, J. Kepler University, 2001. Google Scholar

[14]

S. O. Warnaar, Summation and transformation formulas for elliptic hypergeometric series, Constr. Approx., 18 (2002), 479-502.  doi: 10.1007/s00365-002-0501-6.  Google Scholar

[15]

D. Zeilberger, The method of creative telescoping, J. Symbolic Comput., 11 (1991), 195-204.  doi: 10.1016/S0747-7171(08)80044-2.  Google Scholar

[1]

Vassili Gelfreich, Carles Simó. High-precision computations of divergent asymptotic series and homoclinic phenomena. Discrete & Continuous Dynamical Systems - B, 2008, 10 (2&3, September) : 511-536. doi: 10.3934/dcdsb.2008.10.511

[2]

Xiaomao Deng, Xiao-Chuan Cai, Jun Zou. A parallel space-time domain decomposition method for unsteady source inversion problems. Inverse Problems & Imaging, 2015, 9 (4) : 1069-1091. doi: 10.3934/ipi.2015.9.1069

[3]

Marion Darbas, Jérémy Heleine, Stephanie Lohrengel. Numerical resolution by the quasi-reversibility method of a data completion problem for Maxwell's equations. Inverse Problems & Imaging, 2020, 14 (6) : 1107-1133. doi: 10.3934/ipi.2020056

[4]

J. Frédéric Bonnans, Justina Gianatti, Francisco J. Silva. On the convergence of the Sakawa-Shindo algorithm in stochastic control. Mathematical Control & Related Fields, 2016, 6 (3) : 391-406. doi: 10.3934/mcrf.2016008

[5]

Demetres D. Kouvatsos, Jumma S. Alanazi, Kevin Smith. A unified ME algorithm for arbitrary open QNMs with mixed blocking mechanisms. Numerical Algebra, Control & Optimization, 2011, 1 (4) : 781-816. doi: 10.3934/naco.2011.1.781

[6]

Z. Reichstein and B. Youssin. Parusinski's "Key Lemma" via algebraic geometry. Electronic Research Announcements, 1999, 5: 136-145.

[7]

Elvise Berchio, Filippo Gazzola, Dario Pierotti. Nodal solutions to critical growth elliptic problems under Steklov boundary conditions. Communications on Pure & Applied Analysis, 2009, 8 (2) : 533-557. doi: 10.3934/cpaa.2009.8.533

[8]

Armin Lechleiter, Tobias Rienmüller. Factorization method for the inverse Stokes problem. Inverse Problems & Imaging, 2013, 7 (4) : 1271-1293. doi: 10.3934/ipi.2013.7.1271

[9]

Ronald E. Mickens. Positivity preserving discrete model for the coupled ODE's modeling glycolysis. Conference Publications, 2003, 2003 (Special) : 623-629. doi: 10.3934/proc.2003.2003.623

[10]

Bernold Fiedler, Carlos Rocha, Matthias Wolfrum. Sturm global attractors for $S^1$-equivariant parabolic equations. Networks & Heterogeneous Media, 2012, 7 (4) : 617-659. doi: 10.3934/nhm.2012.7.617

[11]

Guido De Philippis, Antonio De Rosa, Jonas Hirsch. The area blow up set for bounded mean curvature submanifolds with respect to elliptic surface energy functionals. Discrete & Continuous Dynamical Systems - A, 2019, 39 (12) : 7031-7056. doi: 10.3934/dcds.2019243

[12]

A. Aghajani, S. F. Mottaghi. Regularity of extremal solutions of semilinaer fourth-order elliptic problems with general nonlinearities. Communications on Pure & Applied Analysis, 2018, 17 (3) : 887-898. doi: 10.3934/cpaa.2018044

[13]

Qiang Guo, Dong Liang. An adaptive wavelet method and its analysis for parabolic equations. Numerical Algebra, Control & Optimization, 2013, 3 (2) : 327-345. doi: 10.3934/naco.2013.3.327

[14]

Hakan Özadam, Ferruh Özbudak. A note on negacyclic and cyclic codes of length $p^s$ over a finite field of characteristic $p$. Advances in Mathematics of Communications, 2009, 3 (3) : 265-271. doi: 10.3934/amc.2009.3.265

[15]

Tao Wu, Yu Lei, Jiao Shi, Maoguo Gong. An evolutionary multiobjective method for low-rank and sparse matrix decomposition. Big Data & Information Analytics, 2017, 2 (1) : 23-37. doi: 10.3934/bdia.2017006

[16]

Deren Han, Zehui Jia, Yongzhong Song, David Z. W. Wang. An efficient projection method for nonlinear inverse problems with sparsity constraints. Inverse Problems & Imaging, 2016, 10 (3) : 689-709. doi: 10.3934/ipi.2016017

[17]

Boris Kramer, John R. Singler. A POD projection method for large-scale algebraic Riccati equations. Numerical Algebra, Control & Optimization, 2016, 6 (4) : 413-435. doi: 10.3934/naco.2016018

[18]

Petra Csomós, Hermann Mena. Fourier-splitting method for solving hyperbolic LQR problems. Numerical Algebra, Control & Optimization, 2018, 8 (1) : 17-46. doi: 10.3934/naco.2018002

[19]

Christina Surulescu, Nicolae Surulescu. Modeling and simulation of some cell dispersion problems by a nonparametric method. Mathematical Biosciences & Engineering, 2011, 8 (2) : 263-277. doi: 10.3934/mbe.2011.8.263

[20]

Min Li. A three term Polak-Ribière-Polyak conjugate gradient method close to the memoryless BFGS quasi-Newton method. Journal of Industrial & Management Optimization, 2020, 16 (1) : 245-260. doi: 10.3934/jimo.2018149

 Impact Factor: 0.263

Metrics

  • PDF downloads (31)
  • HTML views (83)
  • Cited by (0)

Other articles
by authors

[Back to Top]