doi: 10.3934/era.2021047
Online First

Online First articles are published articles within a journal that have not yet been assigned to a formal issue. This means they do not yet have a volume number, issue number, or page numbers assigned to them, however, they can still be found and cited using their DOI (Digital Object Identifier). Online First publication benefits the research community by making new scientific discoveries known as quickly as possible.

Readers can access Online First articles via the “Online First” tab for the selected journal.

On a fractional Schrödinger equation in the presence of harmonic potential

1. 

Mathematics Department, University of Wisconsin-Madison, Madison, WI 53706, USA

2. 

Department of Mathematics, California State University, Los Angeles, Los Angeles, CA 90032, USA

* Corresponding author: Hichem Hajaiej

Received  November 2020 Revised  March 2021 Early access June 2021

In this paper, we establish the existence of ground state solutions for a fractional Schrödinger equation in the presence of a harmonic trapping potential. We also address the orbital stability of standing waves. Additionally, we provide interesting numerical results about the dynamics and compare them with other types of Schrödinger equations [11,18]. Our results explain the effect of each term of the Schrödinger equation: the fractional power, the power of the nonlinearity, and the harmonic potential.

Citation: Zhiyan Ding, Hichem Hajaiej. On a fractional Schrödinger equation in the presence of harmonic potential. Electronic Research Archive, doi: 10.3934/era.2021047
References:
[1]

B. Alouini, Finite dimensional global attractor for a damped fractional anisotropic Schrödinger type equation with harmonic potential, Commun. Pure Appl. Anal., 19 (2020), 4545-4573.  doi: 10.3934/cpaa.2020206.  Google Scholar

[2]

W. Bao and Q. Du, Computing the ground state solution of Bose–Einstein condensates by a normalized gradient flow, SIAM J. Sci. Comput., 25 (2004), 1674-1697.  doi: 10.1137/S1064827503422956.  Google Scholar

[3]

A. Burchard and H. Hajaiej, Rearrangement inequalities for functionals with monotone integrands, J. Funct. Anal., 233 (2006), 561-582.  doi: 10.1016/j.jfa.2005.08.010.  Google Scholar

[4]

R. Carles and H. Hajaiej, Complementary study of the standing wave solutions of the Gross-Pitaevskii equation in dipolar quantum gases, Bull. Lond. Math. Soc., 47 (2015), 509-518.  doi: 10.1112/blms/bdv024.  Google Scholar

[5]

T. Cazenave and P.-L. Lions, Orbital stability of standing waves for some nonlinear Schrödinger equations, Comm. Math. Phys., 85 (1982), 549-561.  doi: 10.1007/BF01403504.  Google Scholar

[6]

X. Chang, Ground state solutions of asymptotically linear fractional Schrödinger equation, J. Math. Phys., 54 (2013), 061504, 10 pp. doi: 10.1063/1.4809933.  Google Scholar

[7]

M. Cheng, Bound state for the fractional Schrödinger equation with unbounded potential, J. Math. Phys., 53 (2012), 043507, 7 pp. doi: 10.1063/1.3701574.  Google Scholar

[8]

S. Duo and Y. Zhang, Mass-conservative Fourier spectral methods for solving the fractional nonlinear Schrödinger equation, Comput. Math. Appl., 71 (2016), 2257-2271.  doi: 10.1016/j.camwa.2015.12.042.  Google Scholar

[9]

H. Emamirad and A. Rougirel, Feynman path formula for the time fractional Schrödinger equation, Discrete Contin. Dyn. Syst. Ser. S, 13 (2020), 3391-3400.  doi: 10.3934/dcdss.2020246.  Google Scholar

[10]

G. Fibich and X.-P. Wang, Stability of solitary waves for nonlinear Schrödinger equations with inhomogeneous nonlinearities, Phys. D, 175 (2003), 96-108.  doi: 10.1016/S0167-2789(02)00626-7.  Google Scholar

[11]

F. Hadj SelemH. HajaiejP. A. Markowich and S. Trabelsi, Variational approach to the orbital stability of standing waves of the Gross-Pitaevskii equation, Milan J. Math., 82 (2014), 273-295.  doi: 10.1007/s00032-014-0227-5.  Google Scholar

[12]

H. Hajaiej, On the optimality of the assumptions used to prove the existence and symmetry of minimizers of some fractional constrained variational problems, Annales Henri Poincaré, 14 (2013), 1425–1433. doi: 10.1007/s00023-012-0212-x.  Google Scholar

[13]

H. HajaiejP. A. Markowich and S. Trabelsi, Minimizers of a class of constrained vectorial variational problems: Part I., Milan J. Math., 82 (2014), 81-98.  doi: 10.1007/s00032-014-0218-6.  Google Scholar

[14]

H. Hajaiej, L. Molinet, T. Ozawa and B. Wang, Sufficient and necessary conditions for the fractional Gagliardo-Nirenberg inequalities and applications to {Navier-Stokes} and generalized Boson equations, RIMS Kôkyȗroku Bessatsu, (2011), 159–175.  Google Scholar

[15]

H. Hajaiej and C. A. Stuart, Symmetrization inequalities for composition operators of Carathéodory type, Proc. London Math. Soc., 87 (2003), 396-418.  doi: 10.1112/S0024611503014473.  Google Scholar

[16]

H. Hajaiej and C. A. Stuart, On the variational approach to the stability of standing waves for the nonlinear Schrödinger equation, Adv. Nonlinear Stud., 4 (2004), 469-501.  doi: 10.1515/ans-2004-0407.  Google Scholar

[17]

K. Kirkpatrick and Y. Zhang, Fractional Schrödinger dynamics and decoherence, Phys. D, 332 (2016), 41-54.  doi: 10.1016/j.physd.2016.05.015.  Google Scholar

[18]

C. Klein, C. Sparber and P. Markowich, Numerical study of fractional nonlinear Schrödinger equations, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci, 470 (2014), 20140364, 26 pp. doi: 10.1098/rspa.2014.0364.  Google Scholar

[19]

N. Laskin, Fractional Schrödinger equation, Phys. Rev. E, 66 (2002), 056108, 7 pp. doi: 10.1103/PhysRevE.66.056108.  Google Scholar

[20]

N. Laskin, Fractional quantum mechanics and Lévy path integrals, Phys. Lett. A, 268 (2000), 298-305.  doi: 10.1016/S0375-9601(00)00201-2.  Google Scholar

[21]

H. A. Rose and M. I. Weinstein, On the bound states of the nonlinear Schrödinger equation with a linear potential, Phys. D, 30 (1988), 207-218.  doi: 10.1016/0167-2789(88)90107-8.  Google Scholar

[22]

Y. Su, H. Chen, S. Liu and X. Fang, Fractional Schrödinger- Poisson systems with weighted Hardy potential and critical exponent, Electron. J. Differential Equations, 16 (2020), Paper No. 1, 17 pp.  Google Scholar

[23]

J. Zhang, Stability of standing waves for nonlinear Schrödinger equations with unbounded potentials, Z. Angew. Math. Phys., 51 (2000), 498-503.  doi: 10.1007/PL00001512.  Google Scholar

[24]

F. ZhaoL. Zhao and Y. Ding, Existence and multiplicity of solutions for a non-periodic Schrödinger equation, Nonlinear Anal., 69 (2008), 3671-3678.  doi: 10.1016/j.na.2007.10.024.  Google Scholar

show all references

References:
[1]

B. Alouini, Finite dimensional global attractor for a damped fractional anisotropic Schrödinger type equation with harmonic potential, Commun. Pure Appl. Anal., 19 (2020), 4545-4573.  doi: 10.3934/cpaa.2020206.  Google Scholar

[2]

W. Bao and Q. Du, Computing the ground state solution of Bose–Einstein condensates by a normalized gradient flow, SIAM J. Sci. Comput., 25 (2004), 1674-1697.  doi: 10.1137/S1064827503422956.  Google Scholar

[3]

A. Burchard and H. Hajaiej, Rearrangement inequalities for functionals with monotone integrands, J. Funct. Anal., 233 (2006), 561-582.  doi: 10.1016/j.jfa.2005.08.010.  Google Scholar

[4]

R. Carles and H. Hajaiej, Complementary study of the standing wave solutions of the Gross-Pitaevskii equation in dipolar quantum gases, Bull. Lond. Math. Soc., 47 (2015), 509-518.  doi: 10.1112/blms/bdv024.  Google Scholar

[5]

T. Cazenave and P.-L. Lions, Orbital stability of standing waves for some nonlinear Schrödinger equations, Comm. Math. Phys., 85 (1982), 549-561.  doi: 10.1007/BF01403504.  Google Scholar

[6]

X. Chang, Ground state solutions of asymptotically linear fractional Schrödinger equation, J. Math. Phys., 54 (2013), 061504, 10 pp. doi: 10.1063/1.4809933.  Google Scholar

[7]

M. Cheng, Bound state for the fractional Schrödinger equation with unbounded potential, J. Math. Phys., 53 (2012), 043507, 7 pp. doi: 10.1063/1.3701574.  Google Scholar

[8]

S. Duo and Y. Zhang, Mass-conservative Fourier spectral methods for solving the fractional nonlinear Schrödinger equation, Comput. Math. Appl., 71 (2016), 2257-2271.  doi: 10.1016/j.camwa.2015.12.042.  Google Scholar

[9]

H. Emamirad and A. Rougirel, Feynman path formula for the time fractional Schrödinger equation, Discrete Contin. Dyn. Syst. Ser. S, 13 (2020), 3391-3400.  doi: 10.3934/dcdss.2020246.  Google Scholar

[10]

G. Fibich and X.-P. Wang, Stability of solitary waves for nonlinear Schrödinger equations with inhomogeneous nonlinearities, Phys. D, 175 (2003), 96-108.  doi: 10.1016/S0167-2789(02)00626-7.  Google Scholar

[11]

F. Hadj SelemH. HajaiejP. A. Markowich and S. Trabelsi, Variational approach to the orbital stability of standing waves of the Gross-Pitaevskii equation, Milan J. Math., 82 (2014), 273-295.  doi: 10.1007/s00032-014-0227-5.  Google Scholar

[12]

H. Hajaiej, On the optimality of the assumptions used to prove the existence and symmetry of minimizers of some fractional constrained variational problems, Annales Henri Poincaré, 14 (2013), 1425–1433. doi: 10.1007/s00023-012-0212-x.  Google Scholar

[13]

H. HajaiejP. A. Markowich and S. Trabelsi, Minimizers of a class of constrained vectorial variational problems: Part I., Milan J. Math., 82 (2014), 81-98.  doi: 10.1007/s00032-014-0218-6.  Google Scholar

[14]

H. Hajaiej, L. Molinet, T. Ozawa and B. Wang, Sufficient and necessary conditions for the fractional Gagliardo-Nirenberg inequalities and applications to {Navier-Stokes} and generalized Boson equations, RIMS Kôkyȗroku Bessatsu, (2011), 159–175.  Google Scholar

[15]

H. Hajaiej and C. A. Stuart, Symmetrization inequalities for composition operators of Carathéodory type, Proc. London Math. Soc., 87 (2003), 396-418.  doi: 10.1112/S0024611503014473.  Google Scholar

[16]

H. Hajaiej and C. A. Stuart, On the variational approach to the stability of standing waves for the nonlinear Schrödinger equation, Adv. Nonlinear Stud., 4 (2004), 469-501.  doi: 10.1515/ans-2004-0407.  Google Scholar

[17]

K. Kirkpatrick and Y. Zhang, Fractional Schrödinger dynamics and decoherence, Phys. D, 332 (2016), 41-54.  doi: 10.1016/j.physd.2016.05.015.  Google Scholar

[18]

C. Klein, C. Sparber and P. Markowich, Numerical study of fractional nonlinear Schrödinger equations, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci, 470 (2014), 20140364, 26 pp. doi: 10.1098/rspa.2014.0364.  Google Scholar

[19]

N. Laskin, Fractional Schrödinger equation, Phys. Rev. E, 66 (2002), 056108, 7 pp. doi: 10.1103/PhysRevE.66.056108.  Google Scholar

[20]

N. Laskin, Fractional quantum mechanics and Lévy path integrals, Phys. Lett. A, 268 (2000), 298-305.  doi: 10.1016/S0375-9601(00)00201-2.  Google Scholar

[21]

H. A. Rose and M. I. Weinstein, On the bound states of the nonlinear Schrödinger equation with a linear potential, Phys. D, 30 (1988), 207-218.  doi: 10.1016/0167-2789(88)90107-8.  Google Scholar

[22]

Y. Su, H. Chen, S. Liu and X. Fang, Fractional Schrödinger- Poisson systems with weighted Hardy potential and critical exponent, Electron. J. Differential Equations, 16 (2020), Paper No. 1, 17 pp.  Google Scholar

[23]

J. Zhang, Stability of standing waves for nonlinear Schrödinger equations with unbounded potentials, Z. Angew. Math. Phys., 51 (2000), 498-503.  doi: 10.1007/PL00001512.  Google Scholar

[24]

F. ZhaoL. Zhao and Y. Ding, Existence and multiplicity of solutions for a non-periodic Schrödinger equation, Nonlinear Anal., 69 (2008), 3671-3678.  doi: 10.1016/j.na.2007.10.024.  Google Scholar

Figure 3.  Ground state solutions with $ \sigma = 1 $ and different $ s $
Figure 6.  Ground state solutions with non-symmetric potential
Figure 7.  Energy and stability check with $ s = 0.8 $, $ \sigma = 1 $
Figure 9.  Abosolute value of solution with different $ s $
Figure 10.  Stability test with $ \psi^s_0(x) = 0.9*u^s_0(x) $
Figure 1.  Ground state solution with $ s = 0.8 $, $ \sigma = 1 $, $ L = 10 $ and $ J = 5000 $
Figure 2.  Time dynamics of standing waves with $ s = 0.8 $, $ \sigma = 1 $, $ L = 10 $ and $ J = 5000 $
Figure 4.  $ L^2 $ distance between ground state solutions of $ s<1 $ and $ s = 1 $ with $ \sigma = 1 $
Figure 5.  Energy and $ \lambda_c $
Figure 8.  $ \|\psi^s(x, t)-u^s(x, t)\|_{\widetilde{\Sigma}_s(\mathbb{R})} $ when $ s = 0.8 $ and $ \sigma = 1 $
Figure 11.  Standing wave, ground state solution and blow up solution with $ s = 0.5 $, $ \delta = 1 $
Figure 12.  Dynamics of FNLS
Figure 13.  Evolution of $ L^\infty $
[1]

Reika Fukuizumi. Stability and instability of standing waves for the nonlinear Schrödinger equation with harmonic potential. Discrete & Continuous Dynamical Systems, 2001, 7 (3) : 525-544. doi: 10.3934/dcds.2001.7.525

[2]

Soohyun Bae, Jaeyoung Byeon. Standing waves of nonlinear Schrödinger equations with optimal conditions for potential and nonlinearity. Communications on Pure & Applied Analysis, 2013, 12 (2) : 831-850. doi: 10.3934/cpaa.2013.12.831

[3]

Brahim Alouini. Finite dimensional global attractor for a damped fractional anisotropic Schrödinger type equation with harmonic potential. Communications on Pure & Applied Analysis, 2020, 19 (9) : 4545-4573. doi: 10.3934/cpaa.2020206

[4]

Yue Liu. Existence of unstable standing waves for the inhomogeneous nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2008, 7 (1) : 193-209. doi: 10.3934/cpaa.2008.7.193

[5]

François Genoud. Existence and stability of high frequency standing waves for a nonlinear Schrödinger equation. Discrete & Continuous Dynamical Systems, 2009, 25 (4) : 1229-1247. doi: 10.3934/dcds.2009.25.1229

[6]

Amit Goswami, Sushila Rathore, Jagdev Singh, Devendra Kumar. Analytical study of fractional nonlinear Schrödinger equation with harmonic oscillator. Discrete & Continuous Dynamical Systems - S, 2021, 14 (10) : 3589-3610. doi: 10.3934/dcdss.2021021

[7]

Wulong Liu, Guowei Dai. Multiple solutions for a fractional nonlinear Schrödinger equation with local potential. Communications on Pure & Applied Analysis, 2017, 16 (6) : 2105-2123. doi: 10.3934/cpaa.2017104

[8]

David Gómez-Castro, Juan Luis Vázquez. The fractional Schrödinger equation with singular potential and measure data. Discrete & Continuous Dynamical Systems, 2019, 39 (12) : 7113-7139. doi: 10.3934/dcds.2019298

[9]

Songbai Peng, Aliang Xia. Normalized solutions of supercritical nonlinear fractional Schrödinger equation with potential. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021128

[10]

Alex H. Ardila. Stability of standing waves for a nonlinear SchrÖdinger equation under an external magnetic field. Communications on Pure & Applied Analysis, 2018, 17 (1) : 163-175. doi: 10.3934/cpaa.2018010

[11]

Reika Fukuizumi, Louis Jeanjean. Stability of standing waves for a nonlinear Schrödinger equation wdelta potentialith a repulsive Dirac. Discrete & Continuous Dynamical Systems, 2008, 21 (1) : 121-136. doi: 10.3934/dcds.2008.21.121

[12]

Jun-ichi Segata. Initial value problem for the fourth order nonlinear Schrödinger type equation on torus and orbital stability of standing waves. Communications on Pure & Applied Analysis, 2015, 14 (3) : 843-859. doi: 10.3934/cpaa.2015.14.843

[13]

Nan Lu. Non-localized standing waves of the hyperbolic cubic nonlinear Schrödinger equation. Discrete & Continuous Dynamical Systems, 2015, 35 (8) : 3533-3567. doi: 10.3934/dcds.2015.35.3533

[14]

Jun-ichi Segata. Well-posedness and existence of standing waves for the fourth order nonlinear Schrödinger type equation. Discrete & Continuous Dynamical Systems, 2010, 27 (3) : 1093-1105. doi: 10.3934/dcds.2010.27.1093

[15]

Divyang G. Bhimani. The nonlinear Schrödinger equations with harmonic potential in modulation spaces. Discrete & Continuous Dynamical Systems, 2019, 39 (10) : 5923-5944. doi: 10.3934/dcds.2019259

[16]

Masahito Ohta. Strong instability of standing waves for nonlinear Schrödinger equations with a partial confinement. Communications on Pure & Applied Analysis, 2018, 17 (4) : 1671-1680. doi: 10.3934/cpaa.2018080

[17]

Huifang Jia, Gongbao Li, Xiao Luo. Stable standing waves for cubic nonlinear Schrödinger systems with partial confinement. Discrete & Continuous Dynamical Systems, 2020, 40 (5) : 2739-2766. doi: 10.3934/dcds.2020148

[18]

Xiaoyu Zeng. Asymptotic properties of standing waves for mass subcritical nonlinear Schrödinger equations. Discrete & Continuous Dynamical Systems, 2017, 37 (3) : 1749-1762. doi: 10.3934/dcds.2017073

[19]

François Genoud, Charles A. Stuart. Schrödinger equations with a spatially decaying nonlinearity: Existence and stability of standing waves. Discrete & Continuous Dynamical Systems, 2008, 21 (1) : 137-186. doi: 10.3934/dcds.2008.21.137

[20]

Zhi Chen, Xianhua Tang, Ning Zhang, Jian Zhang. Standing waves for Schrödinger-Poisson system with general nonlinearity. Discrete & Continuous Dynamical Systems, 2019, 39 (10) : 6103-6129. doi: 10.3934/dcds.2019266

2020 Impact Factor: 1.833

Metrics

  • PDF downloads (84)
  • HTML views (159)
  • Cited by (0)

Other articles
by authors

[Back to Top]