• Previous Article
    Global existence for a two-species chemotaxis-Navier-Stokes system with $ p $-Laplacian
  • ERA Home
  • This Issue
  • Next Article
    Multiple-site deep brain stimulation with delayed rectangular waveforms for Parkinson's disease
November  2021, 29(5): 3489-3507. doi: 10.3934/era.2021049

Identities for linear recursive sequences of order $ 2 $

1. 

Department of Mathematics, Illinois Wesleyan University, Bloomington, Illinois 61702, USA

2. 

Department of Mathematical Sciences, University of Nevada, Las Vegas, Las Vegas, Nevada, 89154-4020, USA

* Corresponding author: Tian-Xiao He

Dedicated to Professor Peter Bundschuh on the occasion of his 80th birthday

Received  January 2021 Revised  July 2021 Published  November 2021 Early access  July 2021

We present here a general rule of construction of identities for recursive sequences by using sequence transformation techniques developed in [16]. Numerous identities are constructed, and many well known identities can be proved readily by using this unified rule. Various Catalan-like and Cassini-like identities are given for recursive number sequences and recursive polynomial sequences. Sets of identities for Diophantine quadruple are shown.

Citation: Tian-Xiao He, Peter J.-S. Shiue. Identities for linear recursive sequences of order $ 2 $. Electronic Research Archive, 2021, 29 (5) : 3489-3507. doi: 10.3934/era.2021049
References:
[1]

A. Baker and H. Davenport, The equations $3x^{2}-2 = y^{2}$ and $8x^{2}-7 = z^{2}$, Quart. J. Math. Oxford Ser., 20 (1969), 129-137.  doi: 10.1093/qmath/20.1.129.  Google Scholar

[2]

A. Behera and G. K. Panda, On the square roots of triangular numbers, Fibonacci Quart., 37 (1999), 98-105.   Google Scholar

[3]

N. D. CahillJ. R. D'Errico and J. P. Spence, Complex factorizations of the Fibonacci and Lucas numbers, Fibonacci Quart., 41 (2003), 13-19.   Google Scholar

[4]

P. CatarinoH. Campos and P. Vasco, On some identities for balancing and cobalancing numbers, Ann. Math. Inform., 45 (2015), 11-24.   Google Scholar

[5]

L. Comtet, Advanced Combinatorics, Reidel, Dordrecht, 1974.  Google Scholar

[6]

C. Cooper, Some high degree generalized Fibonacci identities, Fibonacci Quart., 57 (2019), 42-47.   Google Scholar

[7]

L. E. Dickson, History of the Theory of Numbers, vol. I, Chelsea Publishing Company, New York, 1966.  Google Scholar

[8]

P. Fermat, Observations sur Diophante, Vol. III, de "Oeuvres de Fermat", publiées par les soins de M.M. Paul Tannery et Charles Henri, Paris, MDCCCXCI. Google Scholar

[9]

R. Frontczak, On Balancing polynomials, Applied Mathematical Sciences, 13 (2019), 57-66.  doi: 10.12988/ams.2019.812183.  Google Scholar

[10]

H. W. Gould, The Girard-Waring power sum formulas for symmetric functions and Fibonacci sequences, Fibonacci Quart., 37 (1999), 135-140.   Google Scholar

[11]

T.-X. He, Impulse response sequences and construction of number sequence identities, J. Integer Seq., 16 (2013), Article 13.8.2, 23 pp.  Google Scholar

[12]

T.-X. He, Construction of nonlinear expression for recursive number sequences, J. Math. Res. Appl., 35 (2015), 473-483.   Google Scholar

[13]

T.-X. He and L. W. Shapiro, Row sums and alternating sums of Riordan arrays, Linear Algebra Appl., 507 (2016), 77-95.  doi: 10.1016/j.laa.2016.05.035.  Google Scholar

[14]

T.-X. He and P. J.-S. Shiue, On sequences of numbers and polynomials defined by linear recurrence relations of order $2$, Int. J. Math. Math. Sci., 2009, Art. ID 709386, 21 pp. doi: 10.1155/2009/709386.  Google Scholar

[15]

T.-X. He and P. J.-S. Shiue, On the applications of the Girard-Waring identities, J. Comput. Anal. Appl., 28 (2020), 698-708.   Google Scholar

[16]

T.-X. HeP. J.-S. ShiueZ. Nie and M. Chen, Recursive sequences and Girard-Waring identities with applications in sequence transformation, Electron. Res. Arch., 28 (2020), 1049-1062.  doi: 10.3934/era.2020057.  Google Scholar

[17]

T.-X. HeP. J.-S. Shiue and T.-W. Weng, Hyperbolic expressions of polynomial sequences and parametric number sequences defined by linear recurrence relations of order 2., J. Concr. Appl. Math., 12 (2014), 63-85.   Google Scholar

[18]

T. L. Heath, Diophantus of Alexandria. A Study on the History of Greek Algebra, 2nd ed., Dover Publ., Inc., New York, 1964.  Google Scholar

[19]

V. E. Hoggatt and G. E. Bergum, Autorreferat of "A problem of Fermat and the Fibonacci sequence", Fibonacci Quart., 15 (1977), 323-330.   Google Scholar

[20]

A. F. Horadam, Generalization of a result of Morgado, Portugaliae Math., 44 (1987), 131-136.   Google Scholar

[21]

A. F. Horadam, Vieta polynomials, A special tribute to Calvin T. Long, Fibonacci Quart., 40 (2002), 223-232.   Google Scholar

[22]

A. F. Horadam and J. M. Mahon, Pell and Pell-Lucas polynomials, Fibonacci Quart., 23 (1985), 7-20.   Google Scholar

[23]

R. Lidl, G. L. Mullen and G. Turnwald, Dickson polynomials, Pitman Monographs and Surveys in Pure and Applied Mathematics, 65. Longman Scientific & Technical, Harlow; copublished in the United States with John Wiley & Sons, Inc., New York, 1993.  Google Scholar

[24]

R. S. Melham and A. G. Shannon, A generalization of the Catalan identity and some consequences, Fibonacci Quart., 33 (1995), 82-84.   Google Scholar

[25]

J. Morgado, Generalization of a result of Hoggatt and Bergum on Fibonacci numbers, Portugaliae Math., 42 (1983-1984), 441-445.   Google Scholar

[26]

J. Morgado, Note on the Chebyshev polynomials and applications to the Fibonacci numbers, Portugal. Math., 52 (1995), 363-378.   Google Scholar

[27]

OEIS, The on-line encyclopedia of integer sequences, 2020, published electronically at http://oeis.org. Google Scholar

[28]

P. K. Ray, On the properties of k-balancing numbers, Ain Shams Engineering J., 9 (2018), 395-402.  doi: 10.1016/j.asej.2016.01.014.  Google Scholar

[29]

P. K. Ray, Application of Chybeshev polynomials in factorizations of balancing and Lucas-balancing numbers, Bol. Soc. Parana. Mat. (3), 30 (2012), 49-56.  doi: 10.5269/bspm.v30i2.12714.  Google Scholar

[30]

G. Udrea, Catalan's identity and Chebyshev polynomials of the second kind, Portugal. Math., 52 (1995), 391-397.   Google Scholar

[31]

G. Udrea, A problem of Diophantos-Fermat and Chebyshev polynomials of the second kind, Portugal. Math., 52 (1995), 301-304.   Google Scholar

[32]

N. G. Voll, The Cassini identity and its relatives, Fibonacci Quart., 48 (2010), 197-201.   Google Scholar

[33]

D. Zwillinger, (Ed.) CRC Standard Mathematical Tables and Formulae, Boca Raton, FL: CRC Press, 2012.  Google Scholar

show all references

References:
[1]

A. Baker and H. Davenport, The equations $3x^{2}-2 = y^{2}$ and $8x^{2}-7 = z^{2}$, Quart. J. Math. Oxford Ser., 20 (1969), 129-137.  doi: 10.1093/qmath/20.1.129.  Google Scholar

[2]

A. Behera and G. K. Panda, On the square roots of triangular numbers, Fibonacci Quart., 37 (1999), 98-105.   Google Scholar

[3]

N. D. CahillJ. R. D'Errico and J. P. Spence, Complex factorizations of the Fibonacci and Lucas numbers, Fibonacci Quart., 41 (2003), 13-19.   Google Scholar

[4]

P. CatarinoH. Campos and P. Vasco, On some identities for balancing and cobalancing numbers, Ann. Math. Inform., 45 (2015), 11-24.   Google Scholar

[5]

L. Comtet, Advanced Combinatorics, Reidel, Dordrecht, 1974.  Google Scholar

[6]

C. Cooper, Some high degree generalized Fibonacci identities, Fibonacci Quart., 57 (2019), 42-47.   Google Scholar

[7]

L. E. Dickson, History of the Theory of Numbers, vol. I, Chelsea Publishing Company, New York, 1966.  Google Scholar

[8]

P. Fermat, Observations sur Diophante, Vol. III, de "Oeuvres de Fermat", publiées par les soins de M.M. Paul Tannery et Charles Henri, Paris, MDCCCXCI. Google Scholar

[9]

R. Frontczak, On Balancing polynomials, Applied Mathematical Sciences, 13 (2019), 57-66.  doi: 10.12988/ams.2019.812183.  Google Scholar

[10]

H. W. Gould, The Girard-Waring power sum formulas for symmetric functions and Fibonacci sequences, Fibonacci Quart., 37 (1999), 135-140.   Google Scholar

[11]

T.-X. He, Impulse response sequences and construction of number sequence identities, J. Integer Seq., 16 (2013), Article 13.8.2, 23 pp.  Google Scholar

[12]

T.-X. He, Construction of nonlinear expression for recursive number sequences, J. Math. Res. Appl., 35 (2015), 473-483.   Google Scholar

[13]

T.-X. He and L. W. Shapiro, Row sums and alternating sums of Riordan arrays, Linear Algebra Appl., 507 (2016), 77-95.  doi: 10.1016/j.laa.2016.05.035.  Google Scholar

[14]

T.-X. He and P. J.-S. Shiue, On sequences of numbers and polynomials defined by linear recurrence relations of order $2$, Int. J. Math. Math. Sci., 2009, Art. ID 709386, 21 pp. doi: 10.1155/2009/709386.  Google Scholar

[15]

T.-X. He and P. J.-S. Shiue, On the applications of the Girard-Waring identities, J. Comput. Anal. Appl., 28 (2020), 698-708.   Google Scholar

[16]

T.-X. HeP. J.-S. ShiueZ. Nie and M. Chen, Recursive sequences and Girard-Waring identities with applications in sequence transformation, Electron. Res. Arch., 28 (2020), 1049-1062.  doi: 10.3934/era.2020057.  Google Scholar

[17]

T.-X. HeP. J.-S. Shiue and T.-W. Weng, Hyperbolic expressions of polynomial sequences and parametric number sequences defined by linear recurrence relations of order 2., J. Concr. Appl. Math., 12 (2014), 63-85.   Google Scholar

[18]

T. L. Heath, Diophantus of Alexandria. A Study on the History of Greek Algebra, 2nd ed., Dover Publ., Inc., New York, 1964.  Google Scholar

[19]

V. E. Hoggatt and G. E. Bergum, Autorreferat of "A problem of Fermat and the Fibonacci sequence", Fibonacci Quart., 15 (1977), 323-330.   Google Scholar

[20]

A. F. Horadam, Generalization of a result of Morgado, Portugaliae Math., 44 (1987), 131-136.   Google Scholar

[21]

A. F. Horadam, Vieta polynomials, A special tribute to Calvin T. Long, Fibonacci Quart., 40 (2002), 223-232.   Google Scholar

[22]

A. F. Horadam and J. M. Mahon, Pell and Pell-Lucas polynomials, Fibonacci Quart., 23 (1985), 7-20.   Google Scholar

[23]

R. Lidl, G. L. Mullen and G. Turnwald, Dickson polynomials, Pitman Monographs and Surveys in Pure and Applied Mathematics, 65. Longman Scientific & Technical, Harlow; copublished in the United States with John Wiley & Sons, Inc., New York, 1993.  Google Scholar

[24]

R. S. Melham and A. G. Shannon, A generalization of the Catalan identity and some consequences, Fibonacci Quart., 33 (1995), 82-84.   Google Scholar

[25]

J. Morgado, Generalization of a result of Hoggatt and Bergum on Fibonacci numbers, Portugaliae Math., 42 (1983-1984), 441-445.   Google Scholar

[26]

J. Morgado, Note on the Chebyshev polynomials and applications to the Fibonacci numbers, Portugal. Math., 52 (1995), 363-378.   Google Scholar

[27]

OEIS, The on-line encyclopedia of integer sequences, 2020, published electronically at http://oeis.org. Google Scholar

[28]

P. K. Ray, On the properties of k-balancing numbers, Ain Shams Engineering J., 9 (2018), 395-402.  doi: 10.1016/j.asej.2016.01.014.  Google Scholar

[29]

P. K. Ray, Application of Chybeshev polynomials in factorizations of balancing and Lucas-balancing numbers, Bol. Soc. Parana. Mat. (3), 30 (2012), 49-56.  doi: 10.5269/bspm.v30i2.12714.  Google Scholar

[30]

G. Udrea, Catalan's identity and Chebyshev polynomials of the second kind, Portugal. Math., 52 (1995), 391-397.   Google Scholar

[31]

G. Udrea, A problem of Diophantos-Fermat and Chebyshev polynomials of the second kind, Portugal. Math., 52 (1995), 301-304.   Google Scholar

[32]

N. G. Voll, The Cassini identity and its relatives, Fibonacci Quart., 48 (2010), 197-201.   Google Scholar

[33]

D. Zwillinger, (Ed.) CRC Standard Mathematical Tables and Formulae, Boca Raton, FL: CRC Press, 2012.  Google Scholar

[1]

Takao Komatsu, Bijan Kumar Patel, Claudio Pita-Ruiz. Several formulas for Bernoulli numbers and polynomials. Advances in Mathematics of Communications, 2021  doi: 10.3934/amc.2021006

[2]

Koh Katagata. On a certain kind of polynomials of degree 4 with disconnected Julia set. Discrete & Continuous Dynamical Systems, 2008, 20 (4) : 975-987. doi: 10.3934/dcds.2008.20.975

[3]

Alexandre Alves, Mostafa Salarinoghabi. On the family of cubic parabolic polynomials. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021121

[4]

Zainidin Eshkuvatov. Homotopy perturbation method and Chebyshev polynomials for solving a class of singular and hypersingular integral equations. Numerical Algebra, Control & Optimization, 2018, 8 (3) : 337-350. doi: 10.3934/naco.2018022

[5]

Michael Boshernitzan, Máté Wierdl. Almost-everywhere convergence and polynomials. Journal of Modern Dynamics, 2008, 2 (3) : 465-470. doi: 10.3934/jmd.2008.2.465

[6]

Elisavet Konstantinou, Aristides Kontogeorgis. Some remarks on the construction of class polynomials. Advances in Mathematics of Communications, 2011, 5 (1) : 109-118. doi: 10.3934/amc.2011.5.109

[7]

Shrihari Sridharan, Atma Ram Tiwari. The dependence of Lyapunov exponents of polynomials on their coefficients. Journal of Computational Dynamics, 2019, 6 (1) : 95-109. doi: 10.3934/jcd.2019004

[8]

Bin Han. Some multivariate polynomials for doubled permutations. Electronic Research Archive, 2021, 29 (2) : 1925-1944. doi: 10.3934/era.2020098

[9]

Nathaniel D. Emerson. Dynamics of polynomials with disconnected Julia sets. Discrete & Continuous Dynamical Systems, 2003, 9 (4) : 801-834. doi: 10.3934/dcds.2003.9.801

[10]

Abdon E. Choque-Rivero, Iván Area. A Favard type theorem for Hurwitz polynomials. Discrete & Continuous Dynamical Systems - B, 2020, 25 (2) : 529-544. doi: 10.3934/dcdsb.2019252

[11]

Jayadev S. Athreya, Gregory A. Margulis. Values of random polynomials at integer points. Journal of Modern Dynamics, 2018, 12: 9-16. doi: 10.3934/jmd.2018002

[12]

Janos Kollar. Polynomials with integral coefficients, equivalent to a given polynomial. Electronic Research Announcements, 1997, 3: 17-27.

[13]

Matthieu Arfeux, Jan Kiwi. Topological cubic polynomials with one periodic ramification point. Discrete & Continuous Dynamical Systems, 2020, 40 (3) : 1799-1811. doi: 10.3934/dcds.2020094

[14]

Nur Fadhilah Ibrahim. An algorithm for the largest eigenvalue of nonhomogeneous nonnegative polynomials. Numerical Algebra, Control & Optimization, 2014, 4 (1) : 75-91. doi: 10.3934/naco.2014.4.75

[15]

Peter H. van der Kamp, D. I. McLaren, G. R. W. Quispel. Homogeneous darboux polynomials and generalising integrable ODE systems. Journal of Computational Dynamics, 2021, 8 (1) : 1-8. doi: 10.3934/jcd.2021001

[16]

Anca Radulescu. The connected Isentropes conjecture in a space of quartic polynomials. Discrete & Continuous Dynamical Systems, 2007, 19 (1) : 139-175. doi: 10.3934/dcds.2007.19.139

[17]

Jean-François Biasse, Michael J. Jacobson, Jr.. Smoothness testing of polynomials over finite fields. Advances in Mathematics of Communications, 2014, 8 (4) : 459-477. doi: 10.3934/amc.2014.8.459

[18]

Ricardo García López. A note on L-series and Hodge spectrum of polynomials. Electronic Research Announcements, 2009, 16: 56-62. doi: 10.3934/era.2009.16.56

[19]

Vladimir Dragović, Katarina Kukić. Discriminantly separable polynomials and quad-equations. Journal of Geometric Mechanics, 2014, 6 (3) : 319-333. doi: 10.3934/jgm.2014.6.319

[20]

Domingo González, Gamaliel Blé. Core entropy of polynomials with a critical point of maximal order. Discrete & Continuous Dynamical Systems, 2019, 39 (1) : 115-130. doi: 10.3934/dcds.2019005

2020 Impact Factor: 1.833

Metrics

  • PDF downloads (145)
  • HTML views (189)
  • Cited by (0)

Other articles
by authors

[Back to Top]