November  2021, 29(5): 3509-3533. doi: 10.3934/era.2021050

Global existence for a two-species chemotaxis-Navier-Stokes system with $ p $-Laplacian

Department of Mathematics, Jilin University, Changchun 130012, China

* Corresponding author: Changchun Liu

Received  February 2021 Revised  May 2021 Published  November 2021 Early access  July 2021

Fund Project: This work is supported by the Jilin Scientific and Technological Development Program

We consider a two-species chemotaxis-Navier-Stokes system with $ p $-Laplacian in three-dimensional smooth bounded domains. It is proved that for any $ p\geq2 $, the problem admits a global weak solution.

Citation: Jiayi Han, Changchun Liu. Global existence for a two-species chemotaxis-Navier-Stokes system with $ p $-Laplacian. Electronic Research Archive, 2021, 29 (5) : 3509-3533. doi: 10.3934/era.2021050
References:
[1]

X. Bai and M. Winkler, Equilibration in a fully parabolic two-species chemotaxis system with competitive kinetics, Indiana Univ. Math. J., 65 (2016), 553-583.  doi: 10.1512/iumj.2016.65.5776.  Google Scholar

[2]

N. BellomoA. BellouquidY. Tao and M. Winkler, Toward a mathematical theory of Keller-Segel models of pattern formation in biological tissues, Math. Models Methods Appl. Sci., 25 (2015), 1663-1763.  doi: 10.1142/S021820251550044X.  Google Scholar

[3]

X. CaoS. Kurima and M. Mizukami, Global existence and asymptotic behavior of classical solutions for a 3D two-species chemotaxis-Stokes system with competitive kinetics, Math. Meth. Appl. Sci., 41 (2018), 3138-3154.  doi: 10.1002/mma.4807.  Google Scholar

[4]

R. Dal PassoH. Garcke and G. Grün, On a fourth-order degenerate parabolic equation: global entropy estimates, existence, and qualitative behavior of solutions, SIAM J. Math. Anal., 29 (1998), 321-342.  doi: 10.1137/S0036141096306170.  Google Scholar

[5]

K. FujieA. Ito and T. Yokota, Existence and uniqueness of local classical solutions to modified tumor invasion models of Chaplain-Anderson type, Adv. Math. Sci. Appl., 24 (2014), 67-84.   Google Scholar

[6]

M. HirataS. KurimaM. Mizukami and T. Yokota, Boundedness and stabilization in a two-dimensional two-species chemotaxis-Navier-Stokes system with competitive kinetics, J. Differential Equations, 263 (2017), 470-490.  doi: 10.1016/j.jde.2017.02.045.  Google Scholar

[7]

C. Jin, Boundedness and global solvability to a chemotaxis-haptotaxis model with slow and fast diffusion, Discrete Contin. Dyn. Syst. Ser. B, 23 (2018), 1675-1688.  doi: 10.3934/dcdsb.2018069.  Google Scholar

[8]

H.-Y. Jin and T. Xiang, Convergence rates of solutions for a two-species chemotaxis-Navier-Stokes sytstem with competitive kinetics, Discrete Contin. Dyn. Syst. Ser. B, 24 (2019), 1919-1942.  doi: 10.3934/dcdsb.2018249.  Google Scholar

[9]

J.-L. Lions, Quelques méthodes de résolution des problémes aux limites non linéaires, Dunod, Gauthier-Villars, Paris, 1969.  Google Scholar

[10]

J. Liu, Boundedness in a chemotaxis-Navier-Stokes System modeling coral fertilization with slow $p$-Laplacian diffusion, J. Math. Fluid Mech., 22 (2020), No. 10, 31 pp. doi: 10.1007/s00021-019-0469-7.  Google Scholar

[11]

C. Liu and P. Li, Global existence for a chemotaxis-haptotaxis model with $p$-Laplacian, Commun. Pure Appl. Anal., 19 (2020), 1399-1419.  doi: 10.3934/cpaa.2020070.  Google Scholar

[12]

C. Liu and P. Li, Boundedness and global solvability for a chemotaxis-haptotaxis model with $p$-Laplacian diffusion, Electron. J. Differential Equations, (2020), Paper No. 16, 16 pp.  Google Scholar

[13]

C. Liu and P. Li, Time periodic solutions for a two-species chemotaxis-Navier-Stokes system, Discrete and Continuous Dynamical Systems Series B, 26 (2021), 4567-4585.  doi: 10.3934/dcdsb.2020303.  Google Scholar

[14]

T. Miyakawa and H. Sohr, On energy inequality, smoothness and large time behaviour in $L^2$ for weak solutions of the Navier-Stokes equations in exterior domains, Math. Z., 199 (1988), 455-478.  doi: 10.1007/BF01161636.  Google Scholar

[15]

M. Mizukami, Boundedness and asymptotic stability in a two-species chemotaxis-competition model with signal-dependent sensitivity, Discrete Contin. Dyn. Syst. Ser. B, 22 (2017), 2301-2319.  doi: 10.3934/dcdsb.2017097.  Google Scholar

[16]

L. Nirenberg, On elliptic partial differential equations, Ann. Scuola Norm. Sup. Pisa Cl. Sci., 13 (1959), 115-162.   Google Scholar

[17]

H. Sohr, The Navier-Stokes Equations. An Elementary Functional Analytic Approach, Birkhäuser, Basel, 2001.  Google Scholar

[18]

C. StinnerC. Surulescu and M. Winkler, Global weak solutions in a PDE-ODE system modeling multiscale cancer cell invasion, SIAM J. Math. Anal., 46 (2014), 1969-2007.  doi: 10.1137/13094058X.  Google Scholar

[19]

W. Tao and Y. Li, Global weak solutions for the three-dimensional chemotaxis-Navier-Stokes system with slow $p$-Laplacian diffusion, Nonlinear Anal. Real World Appl., 45 (2019), 26-52.  doi: 10.1016/j.nonrwa.2018.06.005.  Google Scholar

[20]

W. Tao and Y. Li, Boundedness of weak solutions of a chemotaxis-Stokes system with slow $p$-Laplacian diffusion, J. Differential Equations, 268 (2020), 6872-6919.  doi: 10.1016/j.jde.2019.11.078.  Google Scholar

[21]

I. TuvalL. CisnerosC. DombrowskiC. W. WolgemuthJ. O. Kessler and R. E. Goldstein, Bacterial swimming and oxygen transport near contact lines, Proc. Natl. Acad. Sci. USA, 102 (2005), 2277-2282.  doi: 10.1073/pnas.0406724102.  Google Scholar

[22]

M. Winkler, Global weak solutions in a three-dimensional chemotaxis-Navier-Stokes system, Ann. Inst. H. Poincaré Anal. Non Linéaire, 33 (2016), 1329-1352.  doi: 10.1016/j.anihpc.2015.05.002.  Google Scholar

[23]

M. Winkler, Global large-data solutions in a chemotaxis-(Navier-)Stokes system modeling cellular swimming in fluid drops, Comm. Partial Differential Equations, 37 (2012), 319-351.  doi: 10.1080/03605302.2011.591865.  Google Scholar

[24]

M. Winkler, Aggregation vs. global diffusive behavior in the higher-dimensional Keller-Segel model, J. Differential Equations, 248 (2010), 2889-2905.  doi: 10.1016/j.jde.2010.02.008.  Google Scholar

[25]

M. Winkler, How far do chemotaxis-driven forces influence regularity in the Navier-Stokes system?, Trans. Amer. Math. Soc., 369 (2017), 3067-3125.  doi: 10.1090/tran/6733.  Google Scholar

show all references

References:
[1]

X. Bai and M. Winkler, Equilibration in a fully parabolic two-species chemotaxis system with competitive kinetics, Indiana Univ. Math. J., 65 (2016), 553-583.  doi: 10.1512/iumj.2016.65.5776.  Google Scholar

[2]

N. BellomoA. BellouquidY. Tao and M. Winkler, Toward a mathematical theory of Keller-Segel models of pattern formation in biological tissues, Math. Models Methods Appl. Sci., 25 (2015), 1663-1763.  doi: 10.1142/S021820251550044X.  Google Scholar

[3]

X. CaoS. Kurima and M. Mizukami, Global existence and asymptotic behavior of classical solutions for a 3D two-species chemotaxis-Stokes system with competitive kinetics, Math. Meth. Appl. Sci., 41 (2018), 3138-3154.  doi: 10.1002/mma.4807.  Google Scholar

[4]

R. Dal PassoH. Garcke and G. Grün, On a fourth-order degenerate parabolic equation: global entropy estimates, existence, and qualitative behavior of solutions, SIAM J. Math. Anal., 29 (1998), 321-342.  doi: 10.1137/S0036141096306170.  Google Scholar

[5]

K. FujieA. Ito and T. Yokota, Existence and uniqueness of local classical solutions to modified tumor invasion models of Chaplain-Anderson type, Adv. Math. Sci. Appl., 24 (2014), 67-84.   Google Scholar

[6]

M. HirataS. KurimaM. Mizukami and T. Yokota, Boundedness and stabilization in a two-dimensional two-species chemotaxis-Navier-Stokes system with competitive kinetics, J. Differential Equations, 263 (2017), 470-490.  doi: 10.1016/j.jde.2017.02.045.  Google Scholar

[7]

C. Jin, Boundedness and global solvability to a chemotaxis-haptotaxis model with slow and fast diffusion, Discrete Contin. Dyn. Syst. Ser. B, 23 (2018), 1675-1688.  doi: 10.3934/dcdsb.2018069.  Google Scholar

[8]

H.-Y. Jin and T. Xiang, Convergence rates of solutions for a two-species chemotaxis-Navier-Stokes sytstem with competitive kinetics, Discrete Contin. Dyn. Syst. Ser. B, 24 (2019), 1919-1942.  doi: 10.3934/dcdsb.2018249.  Google Scholar

[9]

J.-L. Lions, Quelques méthodes de résolution des problémes aux limites non linéaires, Dunod, Gauthier-Villars, Paris, 1969.  Google Scholar

[10]

J. Liu, Boundedness in a chemotaxis-Navier-Stokes System modeling coral fertilization with slow $p$-Laplacian diffusion, J. Math. Fluid Mech., 22 (2020), No. 10, 31 pp. doi: 10.1007/s00021-019-0469-7.  Google Scholar

[11]

C. Liu and P. Li, Global existence for a chemotaxis-haptotaxis model with $p$-Laplacian, Commun. Pure Appl. Anal., 19 (2020), 1399-1419.  doi: 10.3934/cpaa.2020070.  Google Scholar

[12]

C. Liu and P. Li, Boundedness and global solvability for a chemotaxis-haptotaxis model with $p$-Laplacian diffusion, Electron. J. Differential Equations, (2020), Paper No. 16, 16 pp.  Google Scholar

[13]

C. Liu and P. Li, Time periodic solutions for a two-species chemotaxis-Navier-Stokes system, Discrete and Continuous Dynamical Systems Series B, 26 (2021), 4567-4585.  doi: 10.3934/dcdsb.2020303.  Google Scholar

[14]

T. Miyakawa and H. Sohr, On energy inequality, smoothness and large time behaviour in $L^2$ for weak solutions of the Navier-Stokes equations in exterior domains, Math. Z., 199 (1988), 455-478.  doi: 10.1007/BF01161636.  Google Scholar

[15]

M. Mizukami, Boundedness and asymptotic stability in a two-species chemotaxis-competition model with signal-dependent sensitivity, Discrete Contin. Dyn. Syst. Ser. B, 22 (2017), 2301-2319.  doi: 10.3934/dcdsb.2017097.  Google Scholar

[16]

L. Nirenberg, On elliptic partial differential equations, Ann. Scuola Norm. Sup. Pisa Cl. Sci., 13 (1959), 115-162.   Google Scholar

[17]

H. Sohr, The Navier-Stokes Equations. An Elementary Functional Analytic Approach, Birkhäuser, Basel, 2001.  Google Scholar

[18]

C. StinnerC. Surulescu and M. Winkler, Global weak solutions in a PDE-ODE system modeling multiscale cancer cell invasion, SIAM J. Math. Anal., 46 (2014), 1969-2007.  doi: 10.1137/13094058X.  Google Scholar

[19]

W. Tao and Y. Li, Global weak solutions for the three-dimensional chemotaxis-Navier-Stokes system with slow $p$-Laplacian diffusion, Nonlinear Anal. Real World Appl., 45 (2019), 26-52.  doi: 10.1016/j.nonrwa.2018.06.005.  Google Scholar

[20]

W. Tao and Y. Li, Boundedness of weak solutions of a chemotaxis-Stokes system with slow $p$-Laplacian diffusion, J. Differential Equations, 268 (2020), 6872-6919.  doi: 10.1016/j.jde.2019.11.078.  Google Scholar

[21]

I. TuvalL. CisnerosC. DombrowskiC. W. WolgemuthJ. O. Kessler and R. E. Goldstein, Bacterial swimming and oxygen transport near contact lines, Proc. Natl. Acad. Sci. USA, 102 (2005), 2277-2282.  doi: 10.1073/pnas.0406724102.  Google Scholar

[22]

M. Winkler, Global weak solutions in a three-dimensional chemotaxis-Navier-Stokes system, Ann. Inst. H. Poincaré Anal. Non Linéaire, 33 (2016), 1329-1352.  doi: 10.1016/j.anihpc.2015.05.002.  Google Scholar

[23]

M. Winkler, Global large-data solutions in a chemotaxis-(Navier-)Stokes system modeling cellular swimming in fluid drops, Comm. Partial Differential Equations, 37 (2012), 319-351.  doi: 10.1080/03605302.2011.591865.  Google Scholar

[24]

M. Winkler, Aggregation vs. global diffusive behavior in the higher-dimensional Keller-Segel model, J. Differential Equations, 248 (2010), 2889-2905.  doi: 10.1016/j.jde.2010.02.008.  Google Scholar

[25]

M. Winkler, How far do chemotaxis-driven forces influence regularity in the Navier-Stokes system?, Trans. Amer. Math. Soc., 369 (2017), 3067-3125.  doi: 10.1090/tran/6733.  Google Scholar

[1]

Laiqing Meng, Jia Yuan, Xiaoxin Zheng. Global existence of almost energy solution to the two-dimensional chemotaxis-Navier-Stokes equations with partial diffusion. Discrete & Continuous Dynamical Systems, 2019, 39 (6) : 3413-3441. doi: 10.3934/dcds.2019141

[2]

Yulan Wang. Global solvability in a two-dimensional self-consistent chemotaxis-Navier-Stokes system. Discrete & Continuous Dynamical Systems - S, 2020, 13 (2) : 329-349. doi: 10.3934/dcdss.2020019

[3]

Minghua Yang, Zunwei Fu, Jinyi Sun. Global solutions to Chemotaxis-Navier-Stokes equations in critical Besov spaces. Discrete & Continuous Dynamical Systems - B, 2018, 23 (8) : 3427-3460. doi: 10.3934/dcdsb.2018284

[4]

Mimi Dai, Han Liu. Low modes regularity criterion for a chemotaxis-Navier-Stokes system. Communications on Pure & Applied Analysis, 2020, 19 (5) : 2713-2735. doi: 10.3934/cpaa.2020118

[5]

Sachiko Ishida. Global existence and boundedness for chemotaxis-Navier-Stokes systems with position-dependent sensitivity in 2D bounded domains. Discrete & Continuous Dynamical Systems, 2015, 35 (8) : 3463-3482. doi: 10.3934/dcds.2015.35.3463

[6]

Xiaoping Zhai, Zhaoyang Yin. Global solutions to the Chemotaxis-Navier-Stokes equations with some large initial data. Discrete & Continuous Dynamical Systems, 2017, 37 (5) : 2829-2859. doi: 10.3934/dcds.2017122

[7]

Qingshan Zhang, Yuxiang Li. Convergence rates of solutions for a two-dimensional chemotaxis-Navier-Stokes system. Discrete & Continuous Dynamical Systems - B, 2015, 20 (8) : 2751-2759. doi: 10.3934/dcdsb.2015.20.2751

[8]

Changchun Liu, Pingping Li. Time periodic solutions for a two-species chemotaxis-Navier-Stokes system. Discrete & Continuous Dynamical Systems - B, 2021, 26 (8) : 4567-4585. doi: 10.3934/dcdsb.2020303

[9]

Chengxin Du, Changchun Liu. Time periodic solution to a two-species chemotaxis-Stokes system with $ p $-Laplacian diffusion. Communications on Pure & Applied Analysis, 2021, 20 (12) : 4321-4345. doi: 10.3934/cpaa.2021162

[10]

Changchun Liu, Pingping Li. Global existence for a chemotaxis-haptotaxis model with $ p $-Laplacian. Communications on Pure & Applied Analysis, 2020, 19 (3) : 1399-1419. doi: 10.3934/cpaa.2020070

[11]

Hai-Yang Jin, Tian Xiang. Convergence rates of solutions for a two-species chemotaxis-Navier-Stokes sytstem with competitive kinetics. Discrete & Continuous Dynamical Systems - B, 2019, 24 (4) : 1919-1942. doi: 10.3934/dcdsb.2018249

[12]

Jian-Guo Liu, Zhaoyun Zhang. Existence of global weak solutions of $ p $-Navier-Stokes equations. Discrete & Continuous Dynamical Systems - B, 2022, 27 (1) : 469-486. doi: 10.3934/dcdsb.2021051

[13]

Lucas C. F. Ferreira, Elder J. Villamizar-Roa. On the existence of solutions for the Navier-Stokes system in a sum of weak-$L^{p}$ spaces. Discrete & Continuous Dynamical Systems, 2010, 27 (1) : 171-183. doi: 10.3934/dcds.2010.27.171

[14]

Frederic Heihoff. Global mass-preserving solutions for a two-dimensional chemotaxis system with rotational flux components coupled with a full Navier–Stokes equation. Discrete & Continuous Dynamical Systems - B, 2020, 25 (12) : 4703-4719. doi: 10.3934/dcdsb.2020120

[15]

Feng Li, Yuxiang Li. Global existence of weak solution in a chemotaxis-fluid system with nonlinear diffusion and rotational flux. Discrete & Continuous Dynamical Systems - B, 2019, 24 (10) : 5409-5436. doi: 10.3934/dcdsb.2019064

[16]

Jinyi Sun, Zunwei Fu, Yue Yin, Minghua Yang. Global existence and Gevrey regularity to the Navier-Stokes-Nernst-Planck-Poisson system in critical Besov-Morrey spaces. Discrete & Continuous Dynamical Systems - B, 2021, 26 (6) : 3409-3425. doi: 10.3934/dcdsb.2020237

[17]

Mohammad A. Rammaha, Daniel Toundykov, Zahava Wilstein. Global existence and decay of energy for a nonlinear wave equation with $p$-Laplacian damping. Discrete & Continuous Dynamical Systems, 2012, 32 (12) : 4361-4390. doi: 10.3934/dcds.2012.32.4361

[18]

Yutaka Tsuzuki. Solvability of $p$-Laplacian parabolic logistic equations with constraints coupled with Navier-Stokes equations in 2D domains. Evolution Equations & Control Theory, 2014, 3 (1) : 191-206. doi: 10.3934/eect.2014.3.191

[19]

Daoyuan Fang, Bin Han, Matthias Hieber. Local and global existence results for the Navier-Stokes equations in the rotational framework. Communications on Pure & Applied Analysis, 2015, 14 (2) : 609-622. doi: 10.3934/cpaa.2015.14.609

[20]

Peixin Zhang, Jianwen Zhang, Junning Zhao. On the global existence of classical solutions for compressible Navier-Stokes equations with vacuum. Discrete & Continuous Dynamical Systems, 2016, 36 (2) : 1085-1103. doi: 10.3934/dcds.2016.36.1085

2020 Impact Factor: 1.833

Metrics

  • PDF downloads (106)
  • HTML views (252)
  • Cited by (0)

Other articles
by authors

[Back to Top]