[1]
|
M. Alamgir and U. Von Luxburg, Shortest path distance in random k-nearest neighbor graphs, arXiv preprint, arXiv: 1206.6381.
|
[2]
|
A. Aldroubi, K. Hamm, A. Koku and A. Sekmen, Cur decompositions, similarity matrices, and subspace clustering, Front. Appl. Math. Stat., 4 (2019), p65.
doi: 10.3389/fams.2018.00065.
|
[3]
|
E. Arias-Castro, Clustering based on pairwise distances when the data is of mixed dimensions, IEEE Transactions on Information Theory, 57 (2011), 1692-1706.
doi: 10.1109/TIT.2011.2104630.
|
[4]
|
R. Basri and D. Jacobs, Lambertian reflectance and linear subspaces, IEEE Transactions on Pattern Analysis & Machine Intelligence, 2002,218–233.
doi: 10.1109/ICCV.2001.937651.
|
[5]
|
J. L. Bentley, Multidimensional binary search trees used for associative searching, Communications of the ACM, 18 (1975), 509-517.
doi: 10.1145/361002.361007.
|
[6]
|
A. Beygelzimer, S. Kakade and J. Langford, Cover trees for nearest neighbor, in Proceedings of the 23rd International Conference on Machine Learning, ACM, 2006, 97–104.
doi: 10.1145/1143844.1143857.
|
[7]
|
A. Bijral, N. Ratliff and N. Srebro, Semi-supervised learning with density based distances,
in Proceedings of the Twenty-Seventh Conference on Uncertainty in Artificial Intelligence,
AUAI Press, 2011, 43–50.
|
[8]
|
H. Chang and D.-Y. Yeung, Robust path-based spectral clustering, Pattern Recognition, 41 (2008), 191-203.
doi: 10.1016/j.patcog.2007.04.010.
|
[9]
|
T. Chu, G. Miller and D. Sheehy, Exploration of a graph-based density sensitive metric, arXiv preprint, arXiv: 1709.07797.
|
[10]
|
R. Coifman and S. Lafon, Diffusion maps, Applied and Computational Harmonic Analysis, 21 (2006), 5-30.
doi: 10.1016/j.acha.2006.04.006.
|
[11]
|
T. Cormen, C. Leiserson, R. Rivest and C. Stein, Introduction to Algorithms, MIT press, 2009.
|
[12]
|
J. Costeira and T. Kanade, A multibody factorization method for independently moving objects, International Journal of Computer Vision, 29 (1998), 159-179.
|
[13]
|
K. Diaz-Chito, A. Hernández-Sabaté and A. López, A reduced feature set for driver head pose estimation, Applied Soft Computing, 45 (2016), 98-107.
doi: 10.1016/j.asoc.2016.04.027.
|
[14]
|
D. Dua and C. Graff, UCImachine learning repository, 2017, http://archive.ics.uci.edu/ml.
|
[15]
|
C. Fefferman, S. Mitter and H. Narayanan, Testing the manifold hypothesis, Journal of the American Mathematical Society, 29 (2016), 983-1049.
doi: 10.1090/jams/852.
|
[16]
|
B. Fischer and J. Buhmann, Path-based clustering for grouping of smooth curves and texture segmentation, IEEE Transactions on Pattern Analysis and Machine Intelligence, 25 (2003), 513-518.
doi: 10.1109/TPAMI.2003.1190577.
|
[17]
|
S. Har-Peled, Computing the k nearest-neighbors for all vertices via dijkstra, arXiv preprint, arXiv: 1607.07818.
|
[18]
|
J. Ho, M.-H. Yang, J. Lim, K.-C. Lee and D. Kriegman, Clustering appearances of objects under varying illumination conditions, 2003 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2003, 11–18.
doi: 10.1109/CVPR.2003.1211332.
|
[19]
|
C. D. Howard and C. Newman, Geodesics and spanning trees for euclidean first-passage percolation, Annals of Probability, 29 (2001), 577-623.
doi: 10.1214/aop/1008956685.
|
[20]
|
S. Hwang, S. Damelin and A. Hero Ⅲ, Shortest path through random points, The Annals of Applied Probability, 26 (2016), 2791-2823.
doi: 10.1214/15-AAP1162.
|
[21]
|
M. Jacobs, E. Merkurjev and S. Esedoḡlu, Auction dynamics: A volume constrained mbo scheme, Journal of Computational Physics, 354 (2018), 288-310.
doi: 10.1016/j.jcp.2017.10.036.
|
[22]
|
A. Little, M. Maggioni and J. Murphy, Path-based spectral clustering: Guarantees, robustness to outliers, and fast algorithms, arXiv preprint, arXiv: 1712.06206.
|
[23]
|
A. Moscovich, A. Jaffe and B. Nadler, Minimax-optimal semi-supervised regression on unknown manifolds, in Artificial Intelligence and Statistics, 2017,933–942.
|
[24]
|
S. Nene, S. Nayar, H. Murase et al., Columbia object image library (coil-20).
|
[25]
|
A. Ng, M. Jordan and Y. Weiss, On spectral clustering: Analysis and an algorithm, in Advances in Neural Information Processing Systems, 2002,849–856.
|
[26]
|
A. Orlitsky and Sajama, Estimating and computing density based distance metrics, in Proceedings of the 22nd International Conference on Machine Learning, ACM, 2005,760–767.
|
[27]
|
J. Tenenbaum, V. De Silva and J. Langford, A global geometric framework for nonlinear dimensionality reduction, Science, 290 (2000), 2319-2323.
doi: 10.1126/science.290.5500.2319.
|
[28]
|
P. Vincent and Y. Bengio, Density-sensitive Metrics and Kernels, Snowbird Learning Workshop, 2003.
|
[29]
|
K. Yin and X.-C. Tai, An effective region force for some variational models for learning and clustering, Journal of Scientific Computing, 74 (2018), 175-196.
doi: 10.1007/s10915-017-0429-4.
|
[30]
|
L. Zelnik-Manor and P. Perona, Self-tuning spectral clustering, in Advances in Neural Information Processing Systems, 2005, 1601–1608.
|