
-
Previous Article
Hierarchical approximations for data reduction and learning at multiple scales
- FoDS Home
- This Issue
-
Next Article
Stability of sampling for CUR decompositions
Topological reconstruction of sub-cellular motion with Ensemble Kalman velocimetry
1. | Mathematics Dept., University of Tennessee, Knoxville, TN 37996, USA |
2. | Center for Biological Physics, Arizona State University, Tempe, AZ 85281, USA |
Microscopy imaging of plant cells allows the elaborate analysis of sub-cellular motions of organelles. The large video data set can be efficiently analyzed by automated algorithms. We develop a novel, data-oriented algorithm, which can track organelle movements and reconstruct their trajectories on stacks of image data. Our method proceeds with three steps: (ⅰ) identification, (ⅱ) localization, and (ⅲ) linking. This method combines topological data analysis and Ensemble Kalman Filtering, and does not assume a specific motion model. Application of this method on simulated data sets shows an agreement with ground truth. We also successfully test our method on real microscopy data.
References:
[1] |
P. Bendich, S. P. Chin, J. Clark, J. Desena, J. Harer, E. Munch, A. Newman, D. Porter, D. Rouse and N. Strawn et al.,
Topological and statistical behavior classifiers for tracking applications, IEEE Transactions on Aerospace and Electronic Systems, 52 (2016), 2644-2661.
|
[2] |
G. Bishop, An Introduction to the Kalman Filter, Technical report, TR 95-041, Department of Computer Science, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-3175, Monday, 2006. |
[3] |
S. S. Blackman, Multiple-target Tracking with Radar Applications, Dedham, MA, Artech House, Inc., 1986. |
[4] |
S. S. v. Braun and E. Schleiff,
Movement of endosymbiotic organelles, Current Protein and Peptide Science, 8 (2007), 426-438.
|
[5] |
G. Cai, L. Parrotta and M. Cresti,
Organelle trafficking, the cytoskeleton, and pollen tube growth, Journal of Integrative Plant biology, 57 (2015), 63-78.
|
[6] |
G. Carlsson,
Topology and data, Bull. Amer. Math. Soc. (N.S.), 46 (2009), 255-308.
doi: 10.1090/S0273-0979-09-01249-X. |
[7] |
G. Casella and R. L. Berger, Statistical Inference, The Wadsworth & Brooks/Cole Statistics/Probability Series. Wadsworth & Brooks/Cole Advanced Books & Software, Pacific Grove, CA, 1990. |
[8] |
N. Chenouard, I. Bloch and J.-C. Olivo-Marin,
Multiple hypothesis tracking for cluttered biological image sequences, IEEE Transactions on Pattern Analysis and Machine Intelligence, 35 (2013), 2736-3750.
|
[9] |
D. A. Collings, J. D. Harper, J. Marc, R. L. Overall and R. T. Mullen,
Life in the fast lane: Actin-based motility of plant peroxisomes, Canadian Journal of Botany, 80 (2002), 430-441.
|
[10] |
G. Danuser,
Computer vision in cell biology, Cell, 147 (2011), 973-978.
|
[11] |
J. Derksen,
Pollen tubes: A Model system for plant cell growth, Botanica Acta, 109 (1996), 341-345.
|
[12] |
H. Edelsbrunner and J. L. Harer, Computational Topology. An Introduction, American Mathematical Soc., Providence, RI, 2010. |
[13] |
G. B. Folland, Real Analysis: Modern Techniques and Their Applications, Pure and Applied Mathematics (New York). A Wiley-Interscience Publication. John Wiley & Sons, Inc., New York, 1999. |
[14] |
A. Gelman, J. B. Carlin, H. S. Stern, D. B. Dunson, A. Vehtari and D. B. Rubin, Bayesian Data Analysis, Texts in Statistical Science Series. CRC Press, Boca Raton, FL, 2014.
![]() ![]() |
[15] |
R. Gutierrez, J. J. Lindeboom, A. R. Paredez, A. M. C. Emons and D. W. Ehrhardt, Arabidopsis cortical microtubules position cellulose synthase delivery to the plasma membrane and interact with cellulose synthase trafficking compartments, Nature Cell Biology, 11 (2009), 797. |
[16] |
T. Hamada, M. Tominaga, T. Fukaya, M. Nakamura, A. Nakano, Y. Watanabe, T. Hashimoto and T. I. Baskin,
Rna processing bodies, peroxisomes, golgi bodies, mitochondria, and endoplasmic reticulum tubule junctions frequently pause at cortical microtubules, Plant and Cell Physiology, 53 (2012), 699-708.
|
[17] |
B. Herman and D. F. Albertini,
A time-lapse video image intensification analysis of cytoplasmic organelle movements during endosome translocation, The Journal of Cell Biology, 98 (1984), 565-576.
|
[18] |
M. Hirsch, R. J. Wareham, M. L. Martin-Fernandez, M. P. Hobson and D. J. Rolfe, A stochastic model for electron multiplication charge-coupled devices–from theory to practice, PloS One, 8 (2013), e53671. |
[19] |
B. Huang, M. Bates and X. Zhuang,
Super-resolution fluorescence microscopy, Annual Review of Biochemistry, 78 (2009), 993-1016.
|
[20] |
F. Huang, T. M. Hartwich, F. E. Rivera-Molina, Y. Lin, W. C. Duim, J. J. Long, P. D. Uchil, J. R. Myers, M. A. Baird, W. Mothes et al., Video-rate nanoscopy using sCMOS camera–specific single-molecule localization algorithms, Nature Methods, 10 (2013), 653. |
[21] |
A. Jaiswal, W. J. Godinez, M. J. Lehmann and K. Rohr, Direct combination of multi-scale detection and multi-frame association for tracking of virus particles in microscopy image data, in 2016 IEEE 13th International Symposium on Biomedical Imaging (ISBI), IEEE, 2016,976–979. |
[22] |
J. Janesick and T. Elliott, History and advancement of large array scientific ccd imagers, in Astronomical CCD Observing and Reduction Techniques, 23 (1992), 1. |
[23] |
S. Jazani, I. Sgouralis and S. Pressé, A method for single molecule tracking using a conventional single-focus confocal setup, The Journal of Chemical Physics, 150 (2019), 114108. |
[24] |
S. Jazani, I. Sgouralis, O. M. Shafraz, M. Levitus, S. Sivasankar and S. Pressé, An alternative framework for fluorescence correlation spectroscopy, Nature Communications, 10. |
[25] |
K. Kang, V. Maroulas, I. Schizas and F. Bao,
Improved distributed particle filters for tracking in a wireless sensor network, Comput. Statist. Data Anal., 117 (2018), 90-108.
doi: 10.1016/j.csda.2017.07.009. |
[26] |
K. Kang, V. Maroulas, I. D. Schizas and E. Blasch, A multilevel homotopy MCMC sequential Monte Carlo filter for multi-target tracking, in Information Fusion (FUSION), 2016 19th International Conference on, IEEE, (2016), 2015–2021. |
[27] |
A. Lee, K. Tsekouras, C. Calderon, C. Bustamante and S. Pressé,
Unraveling the thousand word picture: An introduction to super-resolution data analysis, Chemical Reviews, 117 (2017), 7276-7330.
|
[28] |
J. W. Lichtman and J.-A. Conchello, Fluorescence microscopy, Nature Methods, 2 (2005), 910. |
[29] |
I. Lichtscheidl and I. Foissner,
Video microscopy of dynamic plant cell organelles: Principles of the technique and practical application, Journal of Microscopy, 181 (1996), 117-128.
|
[30] |
S. Liu, M. J. Mlodzianoski, Z. Hu, Y. Ren, K. McElmurry, D. M. Suter and F. Huang, sCMOSnoise-correction algorithm for microscopy images, Nature Methods, 14 (2017), 760. |
[31] |
C. W. Lloyd,
The plant cytoskeleton: The impact of fluorescence microscopy, Annual Review of Plant Physiology, 38 (1987), 119-137.
doi: 10.1146/annurev.pp.38.060187.001003. |
[32] |
D. C. Logan and C. J. Leaver,
Mitochondria-targeted GFP highlights the heterogeneity of mitochondrial shape, size and movement within living plant cells, Journal of Experimental Botany, 51 (2000), 865-871.
doi: 10.1093/jexbot/51.346.865. |
[33] |
V. Maroulas and A. Nebenführ,
Tracking rapid intracellular movements: A Bayesian random set approach, Ann. Appl. Stat., 9 (2015), 926-949.
doi: 10.1214/15-AOAS819. |
[34] |
V. Maroulas and P. Stinis,
Improved particle filters for multi-target tracking, J. Comput. Phys., 231 (2012), 602-611.
doi: 10.1016/j.jcp.2011.09.023. |
[35] | |
[36] |
A. Nebenführ, Identifying subcellular protein localization with fluorescent protein fusions after transient expression in onion epidermal cells, in Plant Cell Morphogenesis, Springer, (2014), 77–85. |
[37] |
A. Nebenführ and R. Dixit,
Kinesins and myosins: Molecular motors that coordinate cellular functions in plants, Annual Review of Plant Biology, 69 (2018), 329-361.
|
[38] |
A. Nebenführ, L. A. Gallagher, T. G. Dunahay, J. A. Frohlick, A. M. Mazurkiewicz, J. B. Meehl and L. A. Staehelin,
Stop-and-go movements of plant golgi stacks are mediated by the acto-myosin system, Plant Physiology, 121 (1999), 1127-1141.
|
[39] |
B. K. Nelson, X. Cai and A. Nebenführ,
A multicolored set of in vivo organelle markers for co-localization studies in Arabidopsis and other plants, The Plant Journal, 51 (2007), 1126-1136.
doi: 10.1111/j.1365-313X.2007.03212.x. |
[40] |
T. D. Pollard and J. A. Cooper,
Actin, a central player in cell shape and movement, Science, 326 (2009), 1208-1212.
doi: 10.1126/science.1175862. |
[41] |
G. Ren, V. Maroulas and I. Schizas,
Distributed spatio-temporal association and tracking of multiple targets using multiple sensors, IEEE Transactions on Aerospace and Electronic Systems, 51 (2015), 2570-2589.
doi: 10.1109/TAES.2015.140042. |
[42] |
G. Ren, V. Maroulas and I. D. Schizas, Exploiting sensor mobility and covariance sparsity for distributed tracking of multiple sparse targets, EURASIP Journal on Advances in Signal Processing, 2016 (2016), 53.
doi: 10.1186/s13634-016-0354-y. |
[43] |
I. F. Sbalzarini and P. Koumoutsakos,
Feature point tracking and trajectory analysis for video imaging in cell biology, Journal of Structural Biology, 151 (2005), 182-195.
doi: 10.1016/j.jsb.2005.06.002. |
[44] |
I. Sgouralis, A. Nebenführ and V. Maroulas,
A Bayesian topological framework for the identification and reconstruction of subcellular motion, SIAM J. Imaging Sci., 10 (2017), 871-899.
doi: 10.1137/16M1095755. |
[45] |
D. M. Shotton,
Video-enhanced light microscopy and its applications in cell biology, J. Cell Sci., 89 (1988), 129-150.
|
[46] |
G. Singh, F. Mémoli and G. E. Carlsson, Topological methods for the analysis of high dimensional data sets and 3d object recognition, in SPBG, (2007), 91–100. |
[47] |
I. Smal, K. Draegestein, N. Galjart, W. Niessen and E. Meijering,
Particle filtering for multiple object tracking in dynamic fluorescence microscopy images: Application to microtubule growth analysis, IEEE Transactions on Medical Imaging, 27 (2008), 789-804.
doi: 10.1109/TMI.2008.916964. |
[48] |
I. Smal, W. Niessen and E. Meijering, Particle filtering for multiple object tracking in molecular cell biology, in Nonlinear Statistical Signal Processing Workshop, 2006 IEEE, IEEE, (2006), 129–132.
doi: 10.1109/NSSPW.2006.4378836. |
[49] |
D. L. Snyder, A. M. Hammoud and R. L. White,
Image recovery from data acquired with a charge-coupled-device camera, JOSA A, 10 (1993), 1014-1023.
doi: 10.1364/JOSAA.10.001014. |
[50] |
E. H. Spanier, Algebraic Topology, vol. 55, Springer Science & Business Media, 1989. |
[51] |
I. A. Sparkes, Motoring around the plant cell: Insights from plant myosins, Biochem Soc. Trans., 38 (2010), 833–838.
doi: 10.1042/BST0380833. |
[52] |
L. D. Stone, R. L. Streit, T. L. Corwin and K. L. Bell, Bayesian Multiple Target Tracking, Artech House, 2013. |
[53] |
M. Tavakoli, S. Jazani, I. Sgouralis, O. M. Shafraz, S. Sivasankar, B. Donaphon, M. Levitus and S. Pressé, Pitching single-focus confocal data analysis one photon at a time with bayesian nonparametrics, Phys. Rev. X, 10 (2020), 011021.
doi: 10.1103/PhysRevX.10.011021. |
[54] |
J. K. Vick and A. Nebenführ,
Putting on the breaks: Regulating organelle movements in plant cells, Journal of Integrative Plant Biology, 54 (2012), 868-874.
doi: 10.1111/j.1744-7909.2012.01180.x. |
show all references
References:
[1] |
P. Bendich, S. P. Chin, J. Clark, J. Desena, J. Harer, E. Munch, A. Newman, D. Porter, D. Rouse and N. Strawn et al.,
Topological and statistical behavior classifiers for tracking applications, IEEE Transactions on Aerospace and Electronic Systems, 52 (2016), 2644-2661.
|
[2] |
G. Bishop, An Introduction to the Kalman Filter, Technical report, TR 95-041, Department of Computer Science, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-3175, Monday, 2006. |
[3] |
S. S. Blackman, Multiple-target Tracking with Radar Applications, Dedham, MA, Artech House, Inc., 1986. |
[4] |
S. S. v. Braun and E. Schleiff,
Movement of endosymbiotic organelles, Current Protein and Peptide Science, 8 (2007), 426-438.
|
[5] |
G. Cai, L. Parrotta and M. Cresti,
Organelle trafficking, the cytoskeleton, and pollen tube growth, Journal of Integrative Plant biology, 57 (2015), 63-78.
|
[6] |
G. Carlsson,
Topology and data, Bull. Amer. Math. Soc. (N.S.), 46 (2009), 255-308.
doi: 10.1090/S0273-0979-09-01249-X. |
[7] |
G. Casella and R. L. Berger, Statistical Inference, The Wadsworth & Brooks/Cole Statistics/Probability Series. Wadsworth & Brooks/Cole Advanced Books & Software, Pacific Grove, CA, 1990. |
[8] |
N. Chenouard, I. Bloch and J.-C. Olivo-Marin,
Multiple hypothesis tracking for cluttered biological image sequences, IEEE Transactions on Pattern Analysis and Machine Intelligence, 35 (2013), 2736-3750.
|
[9] |
D. A. Collings, J. D. Harper, J. Marc, R. L. Overall and R. T. Mullen,
Life in the fast lane: Actin-based motility of plant peroxisomes, Canadian Journal of Botany, 80 (2002), 430-441.
|
[10] |
G. Danuser,
Computer vision in cell biology, Cell, 147 (2011), 973-978.
|
[11] |
J. Derksen,
Pollen tubes: A Model system for plant cell growth, Botanica Acta, 109 (1996), 341-345.
|
[12] |
H. Edelsbrunner and J. L. Harer, Computational Topology. An Introduction, American Mathematical Soc., Providence, RI, 2010. |
[13] |
G. B. Folland, Real Analysis: Modern Techniques and Their Applications, Pure and Applied Mathematics (New York). A Wiley-Interscience Publication. John Wiley & Sons, Inc., New York, 1999. |
[14] |
A. Gelman, J. B. Carlin, H. S. Stern, D. B. Dunson, A. Vehtari and D. B. Rubin, Bayesian Data Analysis, Texts in Statistical Science Series. CRC Press, Boca Raton, FL, 2014.
![]() ![]() |
[15] |
R. Gutierrez, J. J. Lindeboom, A. R. Paredez, A. M. C. Emons and D. W. Ehrhardt, Arabidopsis cortical microtubules position cellulose synthase delivery to the plasma membrane and interact with cellulose synthase trafficking compartments, Nature Cell Biology, 11 (2009), 797. |
[16] |
T. Hamada, M. Tominaga, T. Fukaya, M. Nakamura, A. Nakano, Y. Watanabe, T. Hashimoto and T. I. Baskin,
Rna processing bodies, peroxisomes, golgi bodies, mitochondria, and endoplasmic reticulum tubule junctions frequently pause at cortical microtubules, Plant and Cell Physiology, 53 (2012), 699-708.
|
[17] |
B. Herman and D. F. Albertini,
A time-lapse video image intensification analysis of cytoplasmic organelle movements during endosome translocation, The Journal of Cell Biology, 98 (1984), 565-576.
|
[18] |
M. Hirsch, R. J. Wareham, M. L. Martin-Fernandez, M. P. Hobson and D. J. Rolfe, A stochastic model for electron multiplication charge-coupled devices–from theory to practice, PloS One, 8 (2013), e53671. |
[19] |
B. Huang, M. Bates and X. Zhuang,
Super-resolution fluorescence microscopy, Annual Review of Biochemistry, 78 (2009), 993-1016.
|
[20] |
F. Huang, T. M. Hartwich, F. E. Rivera-Molina, Y. Lin, W. C. Duim, J. J. Long, P. D. Uchil, J. R. Myers, M. A. Baird, W. Mothes et al., Video-rate nanoscopy using sCMOS camera–specific single-molecule localization algorithms, Nature Methods, 10 (2013), 653. |
[21] |
A. Jaiswal, W. J. Godinez, M. J. Lehmann and K. Rohr, Direct combination of multi-scale detection and multi-frame association for tracking of virus particles in microscopy image data, in 2016 IEEE 13th International Symposium on Biomedical Imaging (ISBI), IEEE, 2016,976–979. |
[22] |
J. Janesick and T. Elliott, History and advancement of large array scientific ccd imagers, in Astronomical CCD Observing and Reduction Techniques, 23 (1992), 1. |
[23] |
S. Jazani, I. Sgouralis and S. Pressé, A method for single molecule tracking using a conventional single-focus confocal setup, The Journal of Chemical Physics, 150 (2019), 114108. |
[24] |
S. Jazani, I. Sgouralis, O. M. Shafraz, M. Levitus, S. Sivasankar and S. Pressé, An alternative framework for fluorescence correlation spectroscopy, Nature Communications, 10. |
[25] |
K. Kang, V. Maroulas, I. Schizas and F. Bao,
Improved distributed particle filters for tracking in a wireless sensor network, Comput. Statist. Data Anal., 117 (2018), 90-108.
doi: 10.1016/j.csda.2017.07.009. |
[26] |
K. Kang, V. Maroulas, I. D. Schizas and E. Blasch, A multilevel homotopy MCMC sequential Monte Carlo filter for multi-target tracking, in Information Fusion (FUSION), 2016 19th International Conference on, IEEE, (2016), 2015–2021. |
[27] |
A. Lee, K. Tsekouras, C. Calderon, C. Bustamante and S. Pressé,
Unraveling the thousand word picture: An introduction to super-resolution data analysis, Chemical Reviews, 117 (2017), 7276-7330.
|
[28] |
J. W. Lichtman and J.-A. Conchello, Fluorescence microscopy, Nature Methods, 2 (2005), 910. |
[29] |
I. Lichtscheidl and I. Foissner,
Video microscopy of dynamic plant cell organelles: Principles of the technique and practical application, Journal of Microscopy, 181 (1996), 117-128.
|
[30] |
S. Liu, M. J. Mlodzianoski, Z. Hu, Y. Ren, K. McElmurry, D. M. Suter and F. Huang, sCMOSnoise-correction algorithm for microscopy images, Nature Methods, 14 (2017), 760. |
[31] |
C. W. Lloyd,
The plant cytoskeleton: The impact of fluorescence microscopy, Annual Review of Plant Physiology, 38 (1987), 119-137.
doi: 10.1146/annurev.pp.38.060187.001003. |
[32] |
D. C. Logan and C. J. Leaver,
Mitochondria-targeted GFP highlights the heterogeneity of mitochondrial shape, size and movement within living plant cells, Journal of Experimental Botany, 51 (2000), 865-871.
doi: 10.1093/jexbot/51.346.865. |
[33] |
V. Maroulas and A. Nebenführ,
Tracking rapid intracellular movements: A Bayesian random set approach, Ann. Appl. Stat., 9 (2015), 926-949.
doi: 10.1214/15-AOAS819. |
[34] |
V. Maroulas and P. Stinis,
Improved particle filters for multi-target tracking, J. Comput. Phys., 231 (2012), 602-611.
doi: 10.1016/j.jcp.2011.09.023. |
[35] | |
[36] |
A. Nebenführ, Identifying subcellular protein localization with fluorescent protein fusions after transient expression in onion epidermal cells, in Plant Cell Morphogenesis, Springer, (2014), 77–85. |
[37] |
A. Nebenführ and R. Dixit,
Kinesins and myosins: Molecular motors that coordinate cellular functions in plants, Annual Review of Plant Biology, 69 (2018), 329-361.
|
[38] |
A. Nebenführ, L. A. Gallagher, T. G. Dunahay, J. A. Frohlick, A. M. Mazurkiewicz, J. B. Meehl and L. A. Staehelin,
Stop-and-go movements of plant golgi stacks are mediated by the acto-myosin system, Plant Physiology, 121 (1999), 1127-1141.
|
[39] |
B. K. Nelson, X. Cai and A. Nebenführ,
A multicolored set of in vivo organelle markers for co-localization studies in Arabidopsis and other plants, The Plant Journal, 51 (2007), 1126-1136.
doi: 10.1111/j.1365-313X.2007.03212.x. |
[40] |
T. D. Pollard and J. A. Cooper,
Actin, a central player in cell shape and movement, Science, 326 (2009), 1208-1212.
doi: 10.1126/science.1175862. |
[41] |
G. Ren, V. Maroulas and I. Schizas,
Distributed spatio-temporal association and tracking of multiple targets using multiple sensors, IEEE Transactions on Aerospace and Electronic Systems, 51 (2015), 2570-2589.
doi: 10.1109/TAES.2015.140042. |
[42] |
G. Ren, V. Maroulas and I. D. Schizas, Exploiting sensor mobility and covariance sparsity for distributed tracking of multiple sparse targets, EURASIP Journal on Advances in Signal Processing, 2016 (2016), 53.
doi: 10.1186/s13634-016-0354-y. |
[43] |
I. F. Sbalzarini and P. Koumoutsakos,
Feature point tracking and trajectory analysis for video imaging in cell biology, Journal of Structural Biology, 151 (2005), 182-195.
doi: 10.1016/j.jsb.2005.06.002. |
[44] |
I. Sgouralis, A. Nebenführ and V. Maroulas,
A Bayesian topological framework for the identification and reconstruction of subcellular motion, SIAM J. Imaging Sci., 10 (2017), 871-899.
doi: 10.1137/16M1095755. |
[45] |
D. M. Shotton,
Video-enhanced light microscopy and its applications in cell biology, J. Cell Sci., 89 (1988), 129-150.
|
[46] |
G. Singh, F. Mémoli and G. E. Carlsson, Topological methods for the analysis of high dimensional data sets and 3d object recognition, in SPBG, (2007), 91–100. |
[47] |
I. Smal, K. Draegestein, N. Galjart, W. Niessen and E. Meijering,
Particle filtering for multiple object tracking in dynamic fluorescence microscopy images: Application to microtubule growth analysis, IEEE Transactions on Medical Imaging, 27 (2008), 789-804.
doi: 10.1109/TMI.2008.916964. |
[48] |
I. Smal, W. Niessen and E. Meijering, Particle filtering for multiple object tracking in molecular cell biology, in Nonlinear Statistical Signal Processing Workshop, 2006 IEEE, IEEE, (2006), 129–132.
doi: 10.1109/NSSPW.2006.4378836. |
[49] |
D. L. Snyder, A. M. Hammoud and R. L. White,
Image recovery from data acquired with a charge-coupled-device camera, JOSA A, 10 (1993), 1014-1023.
doi: 10.1364/JOSAA.10.001014. |
[50] |
E. H. Spanier, Algebraic Topology, vol. 55, Springer Science & Business Media, 1989. |
[51] |
I. A. Sparkes, Motoring around the plant cell: Insights from plant myosins, Biochem Soc. Trans., 38 (2010), 833–838.
doi: 10.1042/BST0380833. |
[52] |
L. D. Stone, R. L. Streit, T. L. Corwin and K. L. Bell, Bayesian Multiple Target Tracking, Artech House, 2013. |
[53] |
M. Tavakoli, S. Jazani, I. Sgouralis, O. M. Shafraz, S. Sivasankar, B. Donaphon, M. Levitus and S. Pressé, Pitching single-focus confocal data analysis one photon at a time with bayesian nonparametrics, Phys. Rev. X, 10 (2020), 011021.
doi: 10.1103/PhysRevX.10.011021. |
[54] |
J. K. Vick and A. Nebenführ,
Putting on the breaks: Regulating organelle movements in plant cells, Journal of Integrative Plant Biology, 54 (2012), 868-874.
doi: 10.1111/j.1744-7909.2012.01180.x. |













total | |||||
20 | 20 | 20 | 20 | 20 | |
20 | 20 | 20 | 20 | 20 | |
20 | 20 | 20 | 20 | 20 | |
24 | 24 | 14 | 17 | 20 | |
32 | 27 | 9 | 14 | 17 | |
33 | 30 | 5 | 10 | 15 | |
53 | 40 | 1 | 4 | 14 |
total | |||||
20 | 20 | 20 | 20 | 20 | |
20 | 20 | 20 | 20 | 20 | |
20 | 20 | 20 | 20 | 20 | |
24 | 24 | 14 | 17 | 20 | |
32 | 27 | 9 | 14 | 17 | |
33 | 30 | 5 | 10 | 15 | |
53 | 40 | 1 | 4 | 14 |
[1] |
Andreas Bock, Colin J. Cotter. Learning landmark geodesics using the ensemble Kalman filter. Foundations of Data Science, 2021, 3 (4) : 701-727. doi: 10.3934/fods.2021020 |
[2] |
Junyoung Jang, Kihoon Jang, Hee-Dae Kwon, Jeehyun Lee. Feedback control of an HBV model based on ensemble kalman filter and differential evolution. Mathematical Biosciences & Engineering, 2018, 15 (3) : 667-691. doi: 10.3934/mbe.2018030 |
[3] |
Jiangqi Wu, Linjie Wen, Jinglai Li. Resampled ensemble Kalman inversion for Bayesian parameter estimation with sequential data. Discrete and Continuous Dynamical Systems - S, 2022, 15 (4) : 837-850. doi: 10.3934/dcdss.2021045 |
[4] |
Alexander Bibov, Heikki Haario, Antti Solonen. Stabilized BFGS approximate Kalman filter. Inverse Problems and Imaging, 2015, 9 (4) : 1003-1024. doi: 10.3934/ipi.2015.9.1003 |
[5] |
Russell Johnson, Carmen Núñez. The Kalman-Bucy filter revisited. Discrete and Continuous Dynamical Systems, 2014, 34 (10) : 4139-4153. doi: 10.3934/dcds.2014.34.4139 |
[6] |
Sebastian Reich, Seoleun Shin. On the consistency of ensemble transform filter formulations. Journal of Computational Dynamics, 2014, 1 (1) : 177-189. doi: 10.3934/jcd.2014.1.177 |
[7] |
George Siopsis. Quantum topological data analysis with continuous variables. Foundations of Data Science, 2019, 1 (4) : 419-431. doi: 10.3934/fods.2019017 |
[8] |
Tyrus Berry, Timothy Sauer. Consistent manifold representation for topological data analysis. Foundations of Data Science, 2019, 1 (1) : 1-38. doi: 10.3934/fods.2019001 |
[9] |
Erik Carlsson, John Gunnar Carlsson, Shannon Sweitzer. Applying topological data analysis to local search problems. Foundations of Data Science, 2022 doi: 10.3934/fods.2022006 |
[10] |
Neil K. Chada, Claudia Schillings, Simon Weissmann. On the incorporation of box-constraints for ensemble Kalman inversion. Foundations of Data Science, 2019, 1 (4) : 433-456. doi: 10.3934/fods.2019018 |
[11] |
Håkon Hoel, Gaukhar Shaimerdenova, Raúl Tempone. Multilevel Ensemble Kalman Filtering based on a sample average of independent EnKF estimators. Foundations of Data Science, 2020, 2 (4) : 351-390. doi: 10.3934/fods.2020017 |
[12] |
Marc Bocquet, Alban Farchi, Quentin Malartic. Online learning of both state and dynamics using ensemble Kalman filters. Foundations of Data Science, 2021, 3 (3) : 305-330. doi: 10.3934/fods.2020015 |
[13] |
Zhiyan Ding, Qin Li, Jianfeng Lu. Ensemble Kalman Inversion for nonlinear problems: Weights, consistency, and variance bounds. Foundations of Data Science, 2021, 3 (3) : 371-411. doi: 10.3934/fods.2020018 |
[14] |
Neil K. Chada, Yuming Chen, Daniel Sanz-Alonso. Iterative ensemble Kalman methods: A unified perspective with some new variants. Foundations of Data Science, 2021, 3 (3) : 331-369. doi: 10.3934/fods.2021011 |
[15] |
Ronan Costaouec, Haoyun Feng, Jesús Izaguirre, Eric Darve. Analysis of the accelerated weighted ensemble methodology. Conference Publications, 2013, 2013 (special) : 171-181. doi: 10.3934/proc.2013.2013.171 |
[16] |
Z. G. Feng, Kok Lay Teo, N. U. Ahmed, Yulin Zhao, W. Y. Yan. Optimal fusion of sensor data for Kalman filtering. Discrete and Continuous Dynamical Systems, 2006, 14 (3) : 483-503. doi: 10.3934/dcds.2006.14.483 |
[17] |
Emmanuel Fleurantin, Christian Sampson, Daniel Paul Maes, Justin Bennett, Tayler Fernandes-Nunez, Sophia Marx, Geir Evensen. A study of disproportionately affected populations by race/ethnicity during the SARS-CoV-2 pandemic using multi-population SEIR modeling and ensemble data assimilation. Foundations of Data Science, 2021, 3 (3) : 479-541. doi: 10.3934/fods.2021022 |
[18] |
Mojtaba F. Fathi, Ahmadreza Baghaie, Ali Bakhshinejad, Raphael H. Sacho, Roshan M. D'Souza. Time-resolved denoising using model order reduction, dynamic mode decomposition, and kalman filter and smoother. Journal of Computational Dynamics, 2020, 7 (2) : 469-487. doi: 10.3934/jcd.2020019 |
[19] |
Wawan Hafid Syaifudin, Endah R. M. Putri. The application of model predictive control on stock portfolio optimization with prediction based on Geometric Brownian Motion-Kalman Filter. Journal of Industrial and Management Optimization, 2021 doi: 10.3934/jimo.2021119 |
[20] |
Xiaoying Han, Jinglai Li, Dongbin Xiu. Error analysis for numerical formulation of particle filter. Discrete and Continuous Dynamical Systems - B, 2015, 20 (5) : 1337-1354. doi: 10.3934/dcdsb.2015.20.1337 |
Impact Factor:
Tools
Metrics
Other articles
by authors
[Back to Top]