
-
Previous Article
Multi-fidelity generative deep learning turbulent flows
- FoDS Home
- This Issue
- Next Article
Multilevel Ensemble Kalman Filtering based on a sample average of independent EnKF estimators
1. | Chair of Mathematics for Uncertainty Quantification, RWTH Aachen University, Aachen, Germany |
2. | Applied Mathematics and Computational Sciences, KAUST, Thuwal, Saudi Arabia |
We introduce a new multilevel ensemble Kalman filter method (MLEnKF) which consists of a hierarchy of independent samples of ensemble Kalman filters (EnKF). This new MLEnKF method is fundamentally different from the preexisting method introduced by Hoel, Law and Tempone in 2016, and it is suitable for extensions towards multi-index Monte Carlo based filtering methods. Robust theoretical analysis and supporting numerical examples show that under appropriate regularity assumptions, the MLEnKF method has better complexity than plain vanilla EnKF in the large-ensemble and fine-resolution limits, for weak approximations of quantities of interest. The method is developed for discrete-time filtering problems with finite-dimensional state space and linear observations polluted by additive Gaussian noise.
References:
[1] |
S. I. Aanonsen, G. Nævdal, D. S. Oliver, A. C. Reynolds, B. Vallès, et al., The ensemble Kalman filter in reservoir engineering-a review, Spe Journal, 14 (2009), 393-412.
doi: 10.2118/117274-PA. |
[2] |
A. Beskos, A. Jasra, K. J. H. Law, Y. Marzouk and Y. Zhou,
Multilevel sequential Monte Carlo with dimension-independent likelihood-informed proposals, SIAM/ASA Journal on Uncertainty Quantification, 6 (2018), 762-786.
doi: 10.1137/17M1120993. |
[3] |
A. Beskos, A. Jasra, K. Law, R. Tempone and Y. Zhou,
Multilevel sequential monte carlo samplers, Stochastic Processes and their Applications, 127 (2017), 1417-1440.
doi: 10.1016/j.spa.2016.08.004. |
[4] |
J. Bezanson, A. Edelman, S. Karpinski and V. B. Shah, Julia: A fresh approach to numerical computing, SIAM Review, 59 (2017), 65–98.
doi: 10.1137/141000671. |
[5] |
D. Blömker, C. Schillings, P. Wacker and S. Weissmann, Well Posedness and Convergence Analysis of the Ensemble Kalman Inversion, Inverse Problems, IOP Publishing, (2019).
doi: 10.1088/1361-6420/ab149c. |
[6] |
G. Burgers, P. J. van Leeuwen and G. Evensen,
Analysis scheme in the ensemble Kalman filter, Monthly Weather Review, 126 (1998), 1719-1724.
doi: 10.1175/1520-0493(1998)126<1719:ASITEK>2.0.CO;2. |
[7] |
A. Chernov, H. Hoel, K. J. H. Law, F. Nobile and R. Tempone, Multilevel ensemble Kalman filtering for spatio-temporal processes, preprint, arXiv: 1710.07282.
doi: 10.1137/15M100955X. |
[8] |
N. D. Conrad, L. Helfmann, J. Zonker, S. Winkelmann and C. Schütte, Human mobility and innovation spreading in ancient times: A stochastic agent-based simulation approach, in EPJ Data Science, Springer, 7 (2018), 24. Google Scholar |
[9] |
J. de Wiljes, S. Reich and W. Stannat, Long-time stability and accuracy of the ensemble Kalman–Bucy filter for fully observed processes and small measurement noise, SIAM Journal on Applied Dynamical Systems, 17, (2018) 1152–1181.
doi: 10.1137/17M1119056. |
[10] |
T. J. Dodwell, C. Ketelsen, R. Scheichl and A. L. Teckentrup,
A hierarchical multilevel Markov chain Monte Carlo algorithm with applications to uncertainty quantification in subsurface flow, SIAM/ASA Journal on Uncertainty Quantification, 3 (2015), 1075-1108.
doi: 10.1137/130915005. |
[11] |
O. G. Ernst, B. Sprungk and H. Starkloff,
Analysis of the ensemble and polynomial chaos Kalman filters in Bayesian inverse problems, SIAM/ASA Journal on Uncertainty Quantification, 3 (2015), 823-851.
doi: 10.1137/140981319. |
[12] |
G. Evensen,
Sequential data assimilation with a nonlinear quasi-geostrophic model using Monte Carlo methods to forecast error statistics, Journal of Geophysical Research: Oceans, 99(C5) (1998), 10143-10162.
doi: 10.1029/94JC00572. |
[13] |
K. Fossum, T. Mannseth and A. S. Stordal,
Assessment of multilevel ensemble-based data assimilation for reservoir history matching, Computational Geosciences, 17 (2019), 1-23.
doi: 10.1007/s10596-019-09911-x. |
[14] |
M. B. Giles,
Multilevel Monte Carlo path simulation, Oper. Res., 56 (2008), 607-617.
doi: 10.1287/opre.1070.0496. |
[15] |
C. Graham and D. Talay, Stochastic simulation and Monte Carlo methods: Mathematical foundations of stochastic simulation, Springer Science & Business Media, 68 (2013).
doi: 10.1007/978-3-642-39363-1. |
[16] |
A. Gregory and C. J. Cotter, A seamless multilevel ensemble transform particle filter, SIAM Journal on Scientific Computing, 39 (2017), A2684–A2701.
doi: 10.1137/16M1102021. |
[17] |
A. Gregory, C. J. Cotter and S. Reich, Multilevel ensemble transform particle filtering, SIAM Journal on Scientific Computing, 38 (2016), A1317–A1338.
doi: 10.1137/15M1038232. |
[18] |
A. Haji-Ali, F. Nobile and R. Tempone,
Multi-index Monte Carlo: When sparsity meets sampling, Numerische Mathematik, 132 (2016), 767-806.
doi: 10.1007/s00211-015-0734-5. |
[19] |
A. Haji-Ali and R. Tempone,
Multilevel and Multi-index Monte Carlo methods for the McKean–Vlasov equation, Statistics and Computing, 28 (2018), 923-935.
doi: 10.1007/s11222-017-9771-5. |
[20] |
S. Heinrich, Multilevel Monte Carlo methods, Large-Scale Scientific Computing, (2001), 58–67.
doi: 10.1007/3-540-45346-6_5. |
[21] |
H. Hoel, J. Häppölä and R. Tempone, Construction of a mean square error adaptive Euler–Maruyama method with applications in multilevel Monte Carlo, Monte Carlo and Quasi-Monte Carlo Methods, (2016), 29–86.
doi: 10.1007/978-3-319-33507-0_2. |
[22] |
H. Hoel, K. J. H. Law and R. Tempone,
Multilevel ensemble Kalman filtering, SIAM Journal on Numerical Analysis, 54 (2016), 1813-1839.
doi: 10.1137/15M100955X. |
[23] |
H. Hoel, E. von Schwerin, A. Szepessy and R. Tempone, Adaptive multilevel monte carlo simulation, Numerical Analysis of Multiscale Computations, (2012), 217–234.
doi: 10.1007/978-3-642-21943-6_10. |
[24] |
H. Hoel, E. Von Schwerin, A. Szepessy and R. Tempone,
Implementation and analysis of an adaptive multilevel Monte Carlo algorithm, Monte Carlo Methods and Applications, 20 (2014), 1-41.
doi: 10.1515/mcma-2013-0014. |
[25] |
P. L. Houtekamer and H. L. Mitchell,
Data assimilation using an ensemble Kalman filter technique, Monthly Weather Review, 126 (1998), 796-811.
doi: 10.1175/1520-0493(1998)126<0796:DAUAEK>2.0.CO;2. |
[26] |
P. L. Houtekamer, H. L. Mitchell, G. Pellerin, M. Buehner, M. Charron, L. Spacek and B. Hansen,
Atmospheric data assimilation with an ensemble Kalman filter: Results with real observations, Monthly Weather Review, 133 (2005), 604-620.
doi: 10.1175/MWR-2864.1. |
[27] |
A. Jasra, K. Kamatani, K. J. H. Law and Y. Zhou,
Multilevel particle filters, SIAM Journal on Numerical Analysis, 55 (2017), 3068-3096.
doi: 10.1137/17M1111553. |
[28] |
R. E. Kalman,
A new approach to linear filtering and prediction problems, Journal of basic Engineering, 82 (1960), 35-45.
doi: 10.1115/1.3662552. |
[29] |
E. Kalnay, Atmospheric Modeling, Data Assimilation and Predictability, Cambridge university press, (2003).
doi: 10.1017/CBO9780511802270. |
[30] |
D. T. B. Kelly, K. J. H. Law and A. M. Stuart, Well-posedness and accuracy of the ensemble Kalman filter in discrete and continuous time, Nonlinearity, 27 (2014), 2579.
doi: 10.1088/0951-7715/27/10/2579. |
[31] |
P. E. Kloeden and E. Platen, Numerical solution of stochastic differential equations, in Applications of Mathematics (New York), 82, Springer-Verlag, Berlin, 1992.
doi: 10.1007/978-3-662-12616-5. |
[32] |
E. Kwiatkowski and J. Mandel,
Convergence of the square root ensemble Kalman filter in the large ensemble limit, SIAM/ASA Journal on Uncertainty Quantification, 3 (2015), 1-17.
doi: 10.1137/140965363. |
[33] |
T. Lange and W. Stannat, On the continuous time limit of the ensemble Kalman filter, preprint, arXiv: 1901.05204.
doi: 10.1090/mcom/3588. |
[34] |
J. Latz, I. Papaioannou and E. Ullmann,
Multilevel sequential Monte Carlo for Bayesian inverse problems, Journal of Computational Physics, 368 (2018), 154-178.
doi: 10.1016/j.jcp.2018.04.014. |
[35] |
K. J. H. Law, H. Tembine and R. Tempone, Deterministic mean-field ensemble Kalman filtering, SIAM Journal on Scientific Computing, 38 (2016), A1251–A1279.
doi: 10.1137/140984415. |
[36] |
F. Le Gland, V. Monbet, V. Tran, et al., Large sample asymptotics for the ensemble Kalman filter, in Oxford University Press (eds. D. Crisan, B. Rozovskii), 2011,598–631. |
[37] |
J. Mandel, L. Cobb and J. D. Beezley,
On the convergence of the ensemble Kalman filter, Applications of Mathematics, 56 (2011), 533-541.
doi: 10.1007/s10492-011-0031-2. |
[38] |
P. D. Moral, A. Jasra, K. J. H. Law and Y. Zhou, Multilevel sequential Monte Carlo samplers for normalizing constants, ACM Transactions on Modeling and Computer Simulation (TOMACS), 27 (2017), 20.
doi: 10.1145/3092841. |
[39] |
B. Peherstorfer, K. Willcox and M. Gunzburger, Optimal model management for multifidelity Monte Carlo estimation, SIAM Journal on Scientific Computing, 38 (2016), A3163–A3194.
doi: 10.1137/15M1046472. |
[40] |
A. Popov, C. Mou, T. Iliescu and A. Sandu, A multifidelity ensemble Kalman filter with reduced order control variates, preprint, arXiv: 2007.00793. Google Scholar |
[41] |
B. V. Rosić, A. Kučerová, J. Sỳkora, O. Pajonk, A. Litvinenko and H. G. Matthies, Parameter identification in a probabilistic setting, Engineering Structures, 50 (2013), 179-196. Google Scholar |
[42] |
C. Schillings and A. M. Stuart,
Analysis of the ensemble Kalman filter for inverse problems, SIAM Journal on Numerical Analysis, 55 (2017), 1264-1290.
doi: 10.1137/16M105959X. |
[43] |
C. Schillings and A. M. Stuart,
Convergence analysis of ensemble Kalman inversion: The linear, noisy case, Applicable Analysis, 97 (2018), 107-123.
doi: 10.1080/00036811.2017.1386784. |
[44] |
C. Schütte and M. Sarich, Metastability and Markov State Models in Molecular Dynamics, American Mathematical Soc., 24 (2013).
doi: 10.1090/cln/024. |
[45] |
A. Szepessy, R. Tempone and G. E. Zouraris,
Adaptive weak approximation of stochastic differential equations, Communications on Pure and Applied Mathematics: A Journal Issued by the Courant Institute of Mathematical Sciences, 54 (2001), 1169-1214.
doi: 10.1002/cpa.10000. |
[46] |
X. T. Tong, A. J. Majda and D. Kelly, Nonlinear stability and ergodicity of ensemble based Kalman filters, Nonlinearity, 29 (2016), 657.
doi: 10.1088/0951-7715/29/2/657. |
show all references
References:
[1] |
S. I. Aanonsen, G. Nævdal, D. S. Oliver, A. C. Reynolds, B. Vallès, et al., The ensemble Kalman filter in reservoir engineering-a review, Spe Journal, 14 (2009), 393-412.
doi: 10.2118/117274-PA. |
[2] |
A. Beskos, A. Jasra, K. J. H. Law, Y. Marzouk and Y. Zhou,
Multilevel sequential Monte Carlo with dimension-independent likelihood-informed proposals, SIAM/ASA Journal on Uncertainty Quantification, 6 (2018), 762-786.
doi: 10.1137/17M1120993. |
[3] |
A. Beskos, A. Jasra, K. Law, R. Tempone and Y. Zhou,
Multilevel sequential monte carlo samplers, Stochastic Processes and their Applications, 127 (2017), 1417-1440.
doi: 10.1016/j.spa.2016.08.004. |
[4] |
J. Bezanson, A. Edelman, S. Karpinski and V. B. Shah, Julia: A fresh approach to numerical computing, SIAM Review, 59 (2017), 65–98.
doi: 10.1137/141000671. |
[5] |
D. Blömker, C. Schillings, P. Wacker and S. Weissmann, Well Posedness and Convergence Analysis of the Ensemble Kalman Inversion, Inverse Problems, IOP Publishing, (2019).
doi: 10.1088/1361-6420/ab149c. |
[6] |
G. Burgers, P. J. van Leeuwen and G. Evensen,
Analysis scheme in the ensemble Kalman filter, Monthly Weather Review, 126 (1998), 1719-1724.
doi: 10.1175/1520-0493(1998)126<1719:ASITEK>2.0.CO;2. |
[7] |
A. Chernov, H. Hoel, K. J. H. Law, F. Nobile and R. Tempone, Multilevel ensemble Kalman filtering for spatio-temporal processes, preprint, arXiv: 1710.07282.
doi: 10.1137/15M100955X. |
[8] |
N. D. Conrad, L. Helfmann, J. Zonker, S. Winkelmann and C. Schütte, Human mobility and innovation spreading in ancient times: A stochastic agent-based simulation approach, in EPJ Data Science, Springer, 7 (2018), 24. Google Scholar |
[9] |
J. de Wiljes, S. Reich and W. Stannat, Long-time stability and accuracy of the ensemble Kalman–Bucy filter for fully observed processes and small measurement noise, SIAM Journal on Applied Dynamical Systems, 17, (2018) 1152–1181.
doi: 10.1137/17M1119056. |
[10] |
T. J. Dodwell, C. Ketelsen, R. Scheichl and A. L. Teckentrup,
A hierarchical multilevel Markov chain Monte Carlo algorithm with applications to uncertainty quantification in subsurface flow, SIAM/ASA Journal on Uncertainty Quantification, 3 (2015), 1075-1108.
doi: 10.1137/130915005. |
[11] |
O. G. Ernst, B. Sprungk and H. Starkloff,
Analysis of the ensemble and polynomial chaos Kalman filters in Bayesian inverse problems, SIAM/ASA Journal on Uncertainty Quantification, 3 (2015), 823-851.
doi: 10.1137/140981319. |
[12] |
G. Evensen,
Sequential data assimilation with a nonlinear quasi-geostrophic model using Monte Carlo methods to forecast error statistics, Journal of Geophysical Research: Oceans, 99(C5) (1998), 10143-10162.
doi: 10.1029/94JC00572. |
[13] |
K. Fossum, T. Mannseth and A. S. Stordal,
Assessment of multilevel ensemble-based data assimilation for reservoir history matching, Computational Geosciences, 17 (2019), 1-23.
doi: 10.1007/s10596-019-09911-x. |
[14] |
M. B. Giles,
Multilevel Monte Carlo path simulation, Oper. Res., 56 (2008), 607-617.
doi: 10.1287/opre.1070.0496. |
[15] |
C. Graham and D. Talay, Stochastic simulation and Monte Carlo methods: Mathematical foundations of stochastic simulation, Springer Science & Business Media, 68 (2013).
doi: 10.1007/978-3-642-39363-1. |
[16] |
A. Gregory and C. J. Cotter, A seamless multilevel ensemble transform particle filter, SIAM Journal on Scientific Computing, 39 (2017), A2684–A2701.
doi: 10.1137/16M1102021. |
[17] |
A. Gregory, C. J. Cotter and S. Reich, Multilevel ensemble transform particle filtering, SIAM Journal on Scientific Computing, 38 (2016), A1317–A1338.
doi: 10.1137/15M1038232. |
[18] |
A. Haji-Ali, F. Nobile and R. Tempone,
Multi-index Monte Carlo: When sparsity meets sampling, Numerische Mathematik, 132 (2016), 767-806.
doi: 10.1007/s00211-015-0734-5. |
[19] |
A. Haji-Ali and R. Tempone,
Multilevel and Multi-index Monte Carlo methods for the McKean–Vlasov equation, Statistics and Computing, 28 (2018), 923-935.
doi: 10.1007/s11222-017-9771-5. |
[20] |
S. Heinrich, Multilevel Monte Carlo methods, Large-Scale Scientific Computing, (2001), 58–67.
doi: 10.1007/3-540-45346-6_5. |
[21] |
H. Hoel, J. Häppölä and R. Tempone, Construction of a mean square error adaptive Euler–Maruyama method with applications in multilevel Monte Carlo, Monte Carlo and Quasi-Monte Carlo Methods, (2016), 29–86.
doi: 10.1007/978-3-319-33507-0_2. |
[22] |
H. Hoel, K. J. H. Law and R. Tempone,
Multilevel ensemble Kalman filtering, SIAM Journal on Numerical Analysis, 54 (2016), 1813-1839.
doi: 10.1137/15M100955X. |
[23] |
H. Hoel, E. von Schwerin, A. Szepessy and R. Tempone, Adaptive multilevel monte carlo simulation, Numerical Analysis of Multiscale Computations, (2012), 217–234.
doi: 10.1007/978-3-642-21943-6_10. |
[24] |
H. Hoel, E. Von Schwerin, A. Szepessy and R. Tempone,
Implementation and analysis of an adaptive multilevel Monte Carlo algorithm, Monte Carlo Methods and Applications, 20 (2014), 1-41.
doi: 10.1515/mcma-2013-0014. |
[25] |
P. L. Houtekamer and H. L. Mitchell,
Data assimilation using an ensemble Kalman filter technique, Monthly Weather Review, 126 (1998), 796-811.
doi: 10.1175/1520-0493(1998)126<0796:DAUAEK>2.0.CO;2. |
[26] |
P. L. Houtekamer, H. L. Mitchell, G. Pellerin, M. Buehner, M. Charron, L. Spacek and B. Hansen,
Atmospheric data assimilation with an ensemble Kalman filter: Results with real observations, Monthly Weather Review, 133 (2005), 604-620.
doi: 10.1175/MWR-2864.1. |
[27] |
A. Jasra, K. Kamatani, K. J. H. Law and Y. Zhou,
Multilevel particle filters, SIAM Journal on Numerical Analysis, 55 (2017), 3068-3096.
doi: 10.1137/17M1111553. |
[28] |
R. E. Kalman,
A new approach to linear filtering and prediction problems, Journal of basic Engineering, 82 (1960), 35-45.
doi: 10.1115/1.3662552. |
[29] |
E. Kalnay, Atmospheric Modeling, Data Assimilation and Predictability, Cambridge university press, (2003).
doi: 10.1017/CBO9780511802270. |
[30] |
D. T. B. Kelly, K. J. H. Law and A. M. Stuart, Well-posedness and accuracy of the ensemble Kalman filter in discrete and continuous time, Nonlinearity, 27 (2014), 2579.
doi: 10.1088/0951-7715/27/10/2579. |
[31] |
P. E. Kloeden and E. Platen, Numerical solution of stochastic differential equations, in Applications of Mathematics (New York), 82, Springer-Verlag, Berlin, 1992.
doi: 10.1007/978-3-662-12616-5. |
[32] |
E. Kwiatkowski and J. Mandel,
Convergence of the square root ensemble Kalman filter in the large ensemble limit, SIAM/ASA Journal on Uncertainty Quantification, 3 (2015), 1-17.
doi: 10.1137/140965363. |
[33] |
T. Lange and W. Stannat, On the continuous time limit of the ensemble Kalman filter, preprint, arXiv: 1901.05204.
doi: 10.1090/mcom/3588. |
[34] |
J. Latz, I. Papaioannou and E. Ullmann,
Multilevel sequential Monte Carlo for Bayesian inverse problems, Journal of Computational Physics, 368 (2018), 154-178.
doi: 10.1016/j.jcp.2018.04.014. |
[35] |
K. J. H. Law, H. Tembine and R. Tempone, Deterministic mean-field ensemble Kalman filtering, SIAM Journal on Scientific Computing, 38 (2016), A1251–A1279.
doi: 10.1137/140984415. |
[36] |
F. Le Gland, V. Monbet, V. Tran, et al., Large sample asymptotics for the ensemble Kalman filter, in Oxford University Press (eds. D. Crisan, B. Rozovskii), 2011,598–631. |
[37] |
J. Mandel, L. Cobb and J. D. Beezley,
On the convergence of the ensemble Kalman filter, Applications of Mathematics, 56 (2011), 533-541.
doi: 10.1007/s10492-011-0031-2. |
[38] |
P. D. Moral, A. Jasra, K. J. H. Law and Y. Zhou, Multilevel sequential Monte Carlo samplers for normalizing constants, ACM Transactions on Modeling and Computer Simulation (TOMACS), 27 (2017), 20.
doi: 10.1145/3092841. |
[39] |
B. Peherstorfer, K. Willcox and M. Gunzburger, Optimal model management for multifidelity Monte Carlo estimation, SIAM Journal on Scientific Computing, 38 (2016), A3163–A3194.
doi: 10.1137/15M1046472. |
[40] |
A. Popov, C. Mou, T. Iliescu and A. Sandu, A multifidelity ensemble Kalman filter with reduced order control variates, preprint, arXiv: 2007.00793. Google Scholar |
[41] |
B. V. Rosić, A. Kučerová, J. Sỳkora, O. Pajonk, A. Litvinenko and H. G. Matthies, Parameter identification in a probabilistic setting, Engineering Structures, 50 (2013), 179-196. Google Scholar |
[42] |
C. Schillings and A. M. Stuart,
Analysis of the ensemble Kalman filter for inverse problems, SIAM Journal on Numerical Analysis, 55 (2017), 1264-1290.
doi: 10.1137/16M105959X. |
[43] |
C. Schillings and A. M. Stuart,
Convergence analysis of ensemble Kalman inversion: The linear, noisy case, Applicable Analysis, 97 (2018), 107-123.
doi: 10.1080/00036811.2017.1386784. |
[44] |
C. Schütte and M. Sarich, Metastability and Markov State Models in Molecular Dynamics, American Mathematical Soc., 24 (2013).
doi: 10.1090/cln/024. |
[45] |
A. Szepessy, R. Tempone and G. E. Zouraris,
Adaptive weak approximation of stochastic differential equations, Communications on Pure and Applied Mathematics: A Journal Issued by the Courant Institute of Mathematical Sciences, 54 (2001), 1169-1214.
doi: 10.1002/cpa.10000. |
[46] |
X. T. Tong, A. J. Majda and D. Kelly, Nonlinear stability and ergodicity of ensemble based Kalman filters, Nonlinearity, 29 (2016), 657.
doi: 10.1088/0951-7715/29/2/657. |







[1] |
Zhiyan Ding, Qin Li, Jianfeng Lu. Ensemble Kalman Inversion for nonlinear problems: Weights, consistency, and variance bounds. Foundations of Data Science, 2020 doi: 10.3934/fods.2020018 |
[2] |
Philipp Harms. Strong convergence rates for markovian representations of fractional processes. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020367 |
[3] |
Xiuli Xu, Xueke Pu. Optimal convergence rates of the magnetohydrodynamic model for quantum plasmas with potential force. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 987-1010. doi: 10.3934/dcdsb.2020150 |
[4] |
George W. Patrick. The geometry of convergence in numerical analysis. Journal of Computational Dynamics, 2021, 8 (1) : 33-58. doi: 10.3934/jcd.2021003 |
[5] |
Matania Ben–Artzi, Joseph Falcovitz, Jiequan Li. The convergence of the GRP scheme. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 1-27. doi: 10.3934/dcds.2009.23.1 |
[6] |
Yukio Kan-On. On the limiting system in the Shigesada, Kawasaki and Teramoto model with large cross-diffusion rates. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3561-3570. doi: 10.3934/dcds.2020161 |
[7] |
Geir Evensen, Javier Amezcua, Marc Bocquet, Alberto Carrassi, Alban Farchi, Alison Fowler, Pieter L. Houtekamer, Christopher K. Jones, Rafael J. de Moraes, Manuel Pulido, Christian Sampson, Femke C. Vossepoel. An international initiative of predicting the SARS-CoV-2 pandemic using ensemble data assimilation. Foundations of Data Science, 2020 doi: 10.3934/fods.2021001 |
[8] |
Thierry Horsin, Mohamed Ali Jendoubi. On the convergence to equilibria of a sequence defined by an implicit scheme. Discrete & Continuous Dynamical Systems - S, 2020 doi: 10.3934/dcdss.2020465 |
[9] |
Alberto Bressan, Carlotta Donadello. On the convergence of viscous approximations after shock interactions. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 29-48. doi: 10.3934/dcds.2009.23.29 |
[10] |
Parikshit Upadhyaya, Elias Jarlebring, Emanuel H. Rubensson. A density matrix approach to the convergence of the self-consistent field iteration. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 99-115. doi: 10.3934/naco.2020018 |
[11] |
Gang Luo, Qingzhi Yang. The point-wise convergence of shifted symmetric higher order power method. Journal of Industrial & Management Optimization, 2021, 17 (1) : 357-368. doi: 10.3934/jimo.2019115 |
[12] |
Toshiko Ogiwara, Danielle Hilhorst, Hiroshi Matano. Convergence and structure theorems for order-preserving dynamical systems with mass conservation. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3883-3907. doi: 10.3934/dcds.2020129 |
[13] |
Takiko Sasaki. Convergence of a blow-up curve for a semilinear wave equation. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1133-1143. doi: 10.3934/dcdss.2020388 |
[14] |
Matúš Tibenský, Angela Handlovičová. Convergence analysis of the discrete duality finite volume scheme for the regularised Heston model. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1181-1195. doi: 10.3934/dcdss.2020226 |
[15] |
Thomas Frenzel, Matthias Liero. Effective diffusion in thin structures via generalized gradient systems and EDP-convergence. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 395-425. doi: 10.3934/dcdss.2020345 |
[16] |
Wei Ouyang, Li Li. Hölder strong metric subregularity and its applications to convergence analysis of inexact Newton methods. Journal of Industrial & Management Optimization, 2021, 17 (1) : 169-184. doi: 10.3934/jimo.2019105 |
[17] |
Yi-Long Luo, Yangjun Ma. Low Mach number limit for the compressible inertial Qian-Sheng model of liquid crystals: Convergence for classical solutions. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 921-966. doi: 10.3934/dcds.2020304 |
[18] |
Gheorghe Craciun, Jiaxin Jin, Casian Pantea, Adrian Tudorascu. Convergence to the complex balanced equilibrium for some chemical reaction-diffusion systems with boundary equilibria. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1305-1335. doi: 10.3934/dcdsb.2020164 |
[19] |
Jan Březina, Eduard Feireisl, Antonín Novotný. On convergence to equilibria of flows of compressible viscous fluids under in/out–flux boundary conditions. Discrete & Continuous Dynamical Systems - A, 2021 doi: 10.3934/dcds.2021009 |
[20] |
Ziang Long, Penghang Yin, Jack Xin. Global convergence and geometric characterization of slow to fast weight evolution in neural network training for classifying linearly non-separable data. Inverse Problems & Imaging, 2021, 15 (1) : 41-62. doi: 10.3934/ipi.2020077 |
Impact Factor:
Tools
Metrics
Other articles
by authors
[Back to Top]