[1]
|
C. Andrieu, N. Freitas, A. Doucet and M. Jordan, An introduction to MCMC for machine learning, Machine Learning, 50 (2003), 5-43.
|
[2]
|
A. Bain and D. Crisan, Fundamentals of Stochastic Filtering, Stochastic Modelling and Applied Probability, Springer New York, 2008.
doi: 10.1007/978-0-387-76896-0.
|
[3]
|
K. Bergemann and S. Reich, A localization technique for ensemble Kalman filters, Quarterly Journal of the Royal Meteorological Society, 136 (2010), 701-707.
doi: 10.1002/qj.591.
|
[4]
|
K. Bergemann and S. Reich, A mollified ensemble Kalman filter, Quarterly Journal of the Royal Meteorological Society, 136 (2010), 1636-1643.
doi: 10.1002/qj.672.
|
[5]
|
D. Blömker, C. Schillings, P. Wacker and S. Weissmann, Well posedness and convergence analysis of the ensemble Kalman inversion, Inverse Problems, 35 (2019), 085007.
doi: 10.1088/1361-6420/ab149c.
|
[6]
|
D. Blomker, C. Schillings and P. Wacker, A strongly convergent numerical scheme from ensemble Kalman inversion, SIAM Journal on Numerical Analysis, 56 (2018), 2537-2562.
doi: 10.1137/17M1132367.
|
[7]
|
J. A. Cañizo, J. A. Carrillo and J. Rosado, A well-posedness theory in measures for some kinetic models of collective motion, Mathematical Models and Methods in Applied Sciences, 21 (2011), 515-539.
doi: 10.1142/S0218202511005131.
|
[8]
|
N. Chada, A. Stuart and X. Tong, Tikhonov regularization within ensemble Kalman inversion, SIAM Journal on Numerical Analysis, 58 (2019), 1263-1294.
doi: 10.1137/19M1242331.
|
[9]
|
N. Chada and X. T. Tong, Convergence acceleration of ensemble Kalman inversion in nonlinear settings, preprint, arXiv: 1911.02424.
|
[10]
|
N. K. Chada, M. A. Iglesias, L. Roininen and A. M. Stuart, Parameterizations for ensemble kalman inversion, Inverse Problems, 34 (2018), 055009.
doi: 10.1088/1361-6420/aab6d9.
|
[11]
|
J. de Wiljes, S. Reich and W. Stannat, Long-time stability and accuracy of the ensemble Kalman–Bucy filter for fully observed processes and small measurement noise, SIAM Journal on Applied Dynamical Systems, 17 (2018), 1152-1181.
doi: 10.1137/17M1119056.
|
[12]
|
Z. Ding and Q. Li, Ensemble Kalman inversion: Mean-field limit and convergence analysis, arXiv: 1908.05575.
|
[13]
|
Z. Ding and Q. Li, Ensemble Kalman sampling: Mean-field limit and convergence analysis, preprint, arXiv: 1910.12923.
|
[14]
|
A. Doucet, N. De Freitas and N. Gordon, An Introduction to Sequential Monte Carlo Methods, Springer New York, New York, NY, 2001.
doi: 10.1007/978-1-4757-3437-9_1.
|
[15]
|
A. Doucet, N. De Freitas and N. Gordon, Sequential Monte Carlo Methods in Practice, Springer New York, London, 2001.
doi: 10.1007/978-1-4757-3437-9.
|
[16]
|
O. G. Ernst, B. Sprungk and H.-J. Starkloff, Analysis of the ensemble and polynomial chaos Kalman filters in bayesian inverse problems, SIAM/ASA Journal on Uncertainty Quantification, 3 (2015), 823-851.
doi: 10.1137/140981319.
|
[17]
|
G. Evensen, Data Assimilation: The Ensemble Kalman Filter, Springer-Verlag, Berlin, Heidelberg, 2006.
doi: 10.1007/978-3-642-03711-5.
|
[18]
|
N. Fournier and A. Guillin, On the rate of convergence in Wasserstein distance of the empirical measure, Probability Theory and Related Fields, 162 (2015), 707-738.
doi: 10.1007/s00440-014-0583-7.
|
[19]
|
A. Garbuno-Inigo, F. Hoffmann, W. Li and A. M. Stuart, Interacting Langevin diffusions: Gradient structure and ensemble Kalman sampler, SIAM Journal on Applied Dynamical Systems, 19 (2020), 412-441.
doi: 10.1137/19M1251655.
|
[20]
|
A. Garbuno-Inigo, N. Nüsken and S. Reich, Affine invariant interacting Langevin dynamics for Bayesian inference, CoRR, abs/1912.02859.
|
[21]
|
J. Geweke, Bayesian inference in econometric models using Monte Carlo integration, Econometrica, 57 (1989), 1317-1339.
doi: 10.2307/1913710.
|
[22]
|
M. Herty and G. Visconti, Continuous limits for constrained ensemble Kalman filter, Inverse Problems, 36 (2020), 075006.
doi: 10.1088/1361-6420/ab8bc5.
|
[23]
|
M. A. Iglesias, K. J. H. Law and A. M. Stuart, Ensemble Kalman methods for inverse problems, Inverse Problems, 29 (2013), 045001.
doi: 10.1088/0266-5611/29/4/045001.
|
[24]
|
T. Lange and W. Stannat, On the continuous time limit of the ensemble Kalman filter, preprint, arXiv: 1901.05204.
doi: 10.1090/mcom/3588.
|
[25]
|
K. J. H. Law, H. Tembine and R. Tempone, Deterministic mean-field ensemble Kalman filtering, SIAM Journal on Scientific Computing, 38 (2016), A1251–A1279.
doi: 10.1137/140984415.
|
[26]
|
D. M. Livings, S. L. Dance and N. K. Nichols, Unbiased ensemble square root filters, Physica D: Nonlinear Phenomena, 237 (2008), 1021-1028.
doi: 10.1016/j.physd.2008.01.005.
|
[27]
|
Y. Lu, J. Lu and J. Nolen, Accelerating Langevin sampling with birth-death, preprint, arXiv: 1905.09863.
|
[28]
|
J. Martin, L. Wilcox, C. Burstedde and O. Ghattas, A stochastic newton MCMC method for large-scale statistical inverse problems with application to seismic inversion, SIAM Journal on Scientific Computing, 34 (2012), A1460–A1487.
doi: 10.1137/110845598.
|
[29]
|
Y. M. Marzouk, H. N. Najm and L. A. Rahn, Stochastic spectral methods for efficient Bayesian solution of inverse problems, Journal of Computational Physics, 224 (2007), 560-586.
doi: 10.1016/j.jcp.2006.10.010.
|
[30]
|
A. Muntean, J. Rademacher and A. Zagaris, Macroscopic and Large Scale Phenomena: Coarse Graining, Mean Field Limits and Ergodicity, LAMM, 3, Springer, Cham, 2016.
doi: 10.1007/978-3-319-26883-5.
|
[31]
|
N. Papadakis, E. Mémin, A. Cuzol and N. Gengembre, Data assimilation with the weighted ensemble Kalman filter, Tellus A, 62 (2010), 673-697.
|
[32]
|
S. Reich, A dynamical systems framework for intermittent data assimilation, BIT Numerical Mathematics, 51 (2011), 235-249.
doi: 10.1007/s10543-010-0302-4.
|
[33]
|
S. Reich and C. Cotter, Probabilistic Forecasting and Bayesian Data Assimilation, Cambridge University Press, 2015.
doi: 10.1017/CBO9781107706804.
|
[34]
|
S. Reich and S. Weissmann, Fokker-planck particle systems for bayesian inference: Computational approaches, preprint, arXiv: 1911.10832.
|
[35]
|
C. Schillings and A. M. Stuart, Analysis of the ensemble Kalman filter for inverse problems, SIAM Journal on Numerical Analysis, 55 (2017), 1264-1290.
doi: 10.1137/16M105959X.
|
[36]
|
M. Tippett, J. Anderson, C. Bishop, T. Hamill and J. Whitaker, Ensemble square root filters, Monthly Weather Review, 131 (2003), 1485-1490.
doi: 10.1175/1520-0493(2003)131<1485:ESRF>2.0.CO;2.
|